2023-2024學年甘肅省臨夏市第一中學中考二模數(shù)學試題含解析_第1頁
2023-2024學年甘肅省臨夏市第一中學中考二模數(shù)學試題含解析_第2頁
2023-2024學年甘肅省臨夏市第一中學中考二模數(shù)學試題含解析_第3頁
2023-2024學年甘肅省臨夏市第一中學中考二模數(shù)學試題含解析_第4頁
2023-2024學年甘肅省臨夏市第一中學中考二模數(shù)學試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年甘肅省臨夏市第一中學中考二模數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖,四邊形ABCD內接于⊙O,若∠B=130°,則∠AOC的大小是()A.130° B.120° C.110° D.100°2.在以下四個圖案中,是軸對稱圖形的是()A. B. C. D.3.已知二次函數(shù)y=ax2+2ax+3a2+3(其中x是自變量),當x≥2時,y隨x的增大而增大,且?2≤x≤1時,y的最大值為9,則a的值為A.1或?2B.?2或2C.2D.14.已知:如圖,在平面直角坐標系xOy中,等邊△AOB的邊長為6,點C在邊OA上,點D在邊AB上,且OC=3BD,反比例函數(shù)y=(k≠0)的圖象恰好經過點C和點D,則k的值為()A. B. C. D.5.的值等于()A. B. C. D.6.若矩形的長和寬是方程x2-7x+12=0的兩根,則矩形的對角線長度為()A.5 B.7 C.8 D.107.已知實數(shù)a、b滿足,則A. B. C. D.8.如圖,直線a,b被直線c所截,若a∥b,∠1=50°,∠3=120°,則∠2的度數(shù)為()A.80° B.70° C.60° D.50°9.有兩把不同的鎖和三把鑰匙,其中兩把鑰匙恰好分別能打開這兩把鎖,第三把鑰匙不能打開這兩把鎖,任意取出一把鑰匙去開任意的一把鎖,一次打開鎖的概率是()A. B. C. D.10.目前,世界上能制造出的最小晶體管的長度只有0.00000004m,將0.00000004用科學記數(shù)法表示為()A.0.4×108 B.4×108 C.4×10﹣8 D.﹣4×108二、填空題(本大題共6個小題,每小題3分,共18分)11.已知關于x的方程x2﹣2x﹣m=0沒有實數(shù)根,那么m的取值范圍是_____.12.某市居民用電價格如表所示:用電量不超過a千瓦時超過a千瓦時的部分單價(元/千瓦時)0.50.6小芳家二月份用電200千瓦時,交電費105元,則a=______.13.因式分解:16a3﹣4a=_____.14.如圖,等邊三角形AOB的頂點A的坐標為(﹣4,0),頂點B在反比例函數(shù)(x<0)的圖象上,則k=.15.已知A(x1,y1),B(x2,y2)都在反比例函數(shù)y=的圖象上.若x1x2=﹣4,則y1y2的值為______.16.甲乙兩種水稻試驗品中連續(xù)5年的平均單位面積產量如下(單位:噸/公頃)品種

第1年

第2年

第3年

第4年

第5年

品種

9.8

9.9

10.1

10

10.2

9.4

10.3

10.8

9.7

9.8

經計算,,試根據(jù)這組數(shù)據(jù)估計_____中水稻品種的產量比較穩(wěn)定.三、解答題(共8題,共72分)17.(8分)如圖,已知一次函數(shù)y=kx+b的圖象與x軸交于點A,與反比例函數(shù)(x<0)的圖象交于點B(﹣2,n),過點B作BC⊥x軸于點C,點D(3﹣3n,1)是該反比例函數(shù)圖象上一點.求m的值;若∠DBC=∠ABC,求一次函數(shù)y=kx+b的表達式.18.(8分)已知四邊形ABCD為正方形,E是BC的中點,連接AE,過點A作∠AFD,使∠AFD=2∠EAB,AF交CD于點F,如圖①,易證:AF=CD+CF.(1)如圖②,當四邊形ABCD為矩形時,其他條件不變,線段AF,CD,CF之間有怎樣的數(shù)量關系?請寫出你的猜想,并給予證明;(2)如圖③,當四邊形ABCD為平行四邊形時,其他條件不變,線段AF,CD,CF之間又有怎樣的數(shù)量關系?請直接寫出你的猜想.圖①圖②圖③19.(8分)如圖,圓O是的外接圓,AE平分交圓O于點E,交BC于點D,過點E作直線.(1)判斷直線l與圓O的關系,并說明理由;(2)若的平分線BF交AD于點F,求證:;(3)在(2)的條件下,若,,求AF的長.20.(8分)為進一步深化基教育課程改革,構建符合素質教育要求的學校課程體系,某學校自主開發(fā)了A書法、B閱讀,C足球,D器樂四門校本選修課程供學生選擇,每門課程被選到的機會均等.學生小紅計劃選修兩門課程,請寫出所有可能的選法;若學生小明和小剛各計劃送修一門課程,則他們兩人恰好選修同一門課程的概率為多少?21.(8分)如圖,半圓O的直徑AB=5cm,點M在AB上且AM=1cm,點P是半圓O上的動點,過點B作BQ⊥PM交PM(或PM的延長線)于點Q.設PM=xcm,BQ=y(tǒng)cm.(當點P與點A或點B重合時,y的值為0)小石根據(jù)學習函數(shù)的經驗,對函數(shù)y隨自變量x的變化而變化的規(guī)律進行了探究.下面是小石的探究過程,請補充完整:(1)通過取點、畫圖、測量,得到了x與y的幾組值,如下表:x/cm11.522.533.54y/cm03.7______3.83.32.5______(2)建立平面直角坐標系,描出以補全后的表中各對對應值為坐標的點,畫出該函數(shù)的圖象;(3)結合畫出的函數(shù)圖象,解決問題:當BQ與直徑AB所夾的銳角為60°時,PM的長度約為______cm.22.(10分)當=,b=2時,求代數(shù)式的值.23.(12分)根據(jù)圖中給出的信息,解答下列問題:放入一個小球水面升高,,放入一個大球水面升高;如果要使水面上升到50,應放入大球、小球各多少個?24.如圖1,在直角梯形ABCD中,動點P從B點出發(fā),沿B→C→D→A勻速運動,設點P運動的路程為x,△ABP的面積為y,圖象如圖2所示.(1)在這個變化中,自變量、因變量分別是、;(2)當點P運動的路程x=4時,△ABP的面積為y=;(3)求AB的長和梯形ABCD的面積.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】分析:先根據(jù)圓內接四邊形的性質得到然后根據(jù)圓周角定理求詳解:∵∴∴故選D.點睛:考查圓內接四邊形的性質,圓周角定理,掌握圓內接四邊形的對角互補是解題的關鍵.2、A【解析】

根據(jù)軸對稱圖形的概念對各選項分析判斷利用排除法求解.【詳解】A、是軸對稱圖形,故本選項正確;

B、不是軸對稱圖形,故本選項錯誤;

C、不是軸對稱圖形,故本選項錯誤;

D、不是軸對稱圖形,故本選項錯誤.

故選:A.【點睛】本題考查了軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合.3、D【解析】

先求出二次函數(shù)的對稱軸,再根據(jù)二次函數(shù)的增減性得出拋物線開口向上a>0,然后由-2≤x≤1時,y的最大值為9,可得x=1時,y=9,即可求出a.【詳解】∵二次函數(shù)y=ax2+2ax+3a2+3(其中x是自變量),∴對稱軸是直線x=-2a2a∵當x≥2時,y隨x的增大而增大,∴a>0,∵-2≤x≤1時,y的最大值為9,∴x=1時,y=a+2a+3a2+3=9,∴3a2+3a-6=0,∴a=1,或a=-2(不合題意舍去).故選D.【點睛】本題考查了二次函數(shù)的性質,二次函數(shù)y=ax2+bx+c(a≠0)的頂點坐標是(-b2a,4ac-b24a),對稱軸直線x=-b2a,二次函數(shù)y=ax2+bx+c(a≠0)的圖象具有如下性質:①當a>0時,拋物線y=ax2+bx+c(a≠0)的開口向上,x<-b2a時,y隨x的增大而減小;x>-b2a時,y隨x的增大而增大;x=-b2a時,y取得最小值4ac-b24a4、A【解析】試題分析:過點C作CE⊥x軸于點E,過點D作DF⊥x軸于點F,如圖所示.設BD=a,則OC=3a.∵△AOB為邊長為1的等邊三角形,∴∠COE=∠DBF=10°,OB=1.在Rt△COE中,∠COE=10°,∠CEO=90°,OC=3a,∴∠OCE=30°,∴OE=a,CE==a,∴點C(a,a).同理,可求出點D的坐標為(1﹣a,a).∵反比例函數(shù)(k≠0)的圖象恰好經過點C和點D,∴k=a×a=(1﹣a)×a,∴a=,k=.故選A.5、C【解析】試題解析:根據(jù)特殊角的三角函數(shù)值,可知:故選C.6、A【解析】解:設矩形的長和寬分別為a、b,則a+b=7,ab=12,所以矩形的對角線長====1.故選A.7、C【解析】

根據(jù)不等式的性質進行判斷.【詳解】解:A、,但不一定成立,例如:,故本選項錯誤;

B、,但不一定成立,例如:,,故本選項錯誤;

C、時,成立,故本選項正確;

D、時,成立,則不一定成立,故本選項錯誤;

故選C.【點睛】考查了不等式的性質要認真弄清不等式的基本性質與等式的基本性質的異同,特別是在不等式兩邊同乘以或除以同一個數(shù)時,不僅要考慮這個數(shù)不等于0,而且必須先確定這個數(shù)是正數(shù)還是負數(shù),如果是負數(shù),不等號的方向必須改變.8、B【解析】

直接利用平行線的性質得出∠4的度數(shù),再利用對頂角的性質得出答案.【詳解】解:∵a∥b,∠1=50°,∴∠4=50°,∵∠3=120°,∴∠2+∠4=120°,∴∠2=120°-50°=70°.故選B.【點睛】此題主要考查了平行線的性質,正確得出∠4的度數(shù)是解題關鍵.9、B【解析】解:將兩把不同的鎖分別用A與B表示,三把鑰匙分別用A,B與C表示,且A鑰匙能打開A鎖,B鑰匙能打開B鎖,畫樹狀圖得:∵共有6種等可能的結果,一次打開鎖的有2種情況,∴一次打開鎖的概率為:.故選B.點睛:本題考查的是用列表法或樹狀圖法求概率.注意樹狀圖法與列表法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;注意概率=所求情況數(shù)與總情況數(shù)之比.10、C【解析】

科學記數(shù)法的表示形式為a×10的形式,其中1≤a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】0.00000004=4×10,故選C【點睛】此題考查科學記數(shù)法,難度不大二、填空題(本大題共6個小題,每小題3分,共18分)11、m<﹣1.【解析】

根據(jù)根的判別式得出b2﹣4ac<0,代入求出不等式的解集即可得到答案.【詳解】∵關于x的方程x2﹣2x﹣m=0沒有實數(shù)根,∴b2﹣4ac=(﹣2)2﹣4×1×(﹣m)<0,解得:m<﹣1,故答案為:m<﹣1.【點睛】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式?=b2﹣4ac與根的關系,熟練掌握根的判別式與根的關系式解答本題的關鍵.當?>0時,一元二次方程有兩個不相等的實數(shù)根;當?=0時,一元二次方程有兩個相等的實數(shù)根;當?<0時,一元二次方程沒有實數(shù)根.12、150【解析】

根據(jù)題意可得等量關系:不超過a千瓦時的電費+超過a千瓦時的電費=105元;根據(jù)等量關系列出方程,解出a的值即可.【詳解】∵0.5×200=100<105,∴a<200.由題意得:0.5a+0.6(200-a)=105,解得:a=150.故答案為:150【點睛】此題主要考查了一元一次方程的應用,關鍵是正確找出題目中的等量關系,列出方程.13、4a(2a+1)(2a﹣1)【解析】

首先提取公因式,再利用平方差公式分解即可.【詳解】原式=4a(4a2﹣1)=4a(2a+1)(2a﹣1),故答案為4a(2a+1)(2a﹣1)【點睛】本題考查了提公因式法與公式法的綜合運用,解題的關鍵是熟練掌握因式分解的方法.14、-4.【解析】

過點B作BD⊥x軸于點D,因為△AOB是等邊三角形,點A的坐標為(-4,0)所∠AOB=60°,根據(jù)銳角三角函數(shù)的定義求出BD及OD的長,可得出B點坐標,進而得出反比例函數(shù)的解析式.【詳解】過點B作BD⊥x軸于點D,∵△AOB是等邊三角形,點A的坐標為(﹣4,0),∴∠AOB=60°,OB=OA=AB=4,∴OD=OB=2,BD=OB?sin60°=4×=2,∴B(﹣2,2),∴k=﹣2×2=﹣4.【點睛】本題考查了反比例函數(shù)圖象上點的坐標特點、等邊三角形的性質、解直角三角函數(shù)等知識,難度適中.15、﹣1.【解析】

根據(jù)反比例函數(shù)圖象上點的坐標特征得到再把它們相乘,然后把代入計算即可.【詳解】根據(jù)題意得所以故答案為:?1.【點睛】考查反比例函數(shù)圖象上點的坐標特征,把點的坐標代入反比例函數(shù)解析式得到是解題的關鍵.16、甲【解析】

根據(jù)方差公式分別求出兩種水稻的產量的方差,再進行比較即可.【詳解】甲種水稻產量的方差是:,乙種水稻產量的方差是:,∴0.02<0.124.∴產量比較穩(wěn)定的小麥品種是甲.三、解答題(共8題,共72分)17、(1)-6;(2).【解析】

(1)由點B(﹣2,n)、D(3﹣3n,1)在反比例函數(shù)(x<0)的圖象上可得﹣2n=3﹣3n,即可得出答案;(2)由(1)得出B、D的坐標,作DE⊥BC.延長DE交AB于點F,證△DBE≌△FBE得DE=FE=4,即可知點F(2,1),再利用待定系數(shù)法求解可得.【詳解】解:(1)∵點B(﹣2,n)、D(3﹣3n,1)在反比例函數(shù)(x<0)的圖象上,∴,解得:;(2)由(1)知反比例函數(shù)解析式為,∵n=3,∴點B(﹣2,3)、D(﹣6,1),如圖,過點D作DE⊥BC于點E,延長DE交AB于點F,在△DBE和△FBE中,∵∠DBE=∠FBE,BE=BE,∠BED=∠BEF=90°,∴△DBE≌△FBE(ASA),∴DE=FE=4,∴點F(2,1),將點B(﹣2,3)、F(2,1)代入y=kx+b,∴,解得:,∴.【點睛】本題主要考查了反比例函數(shù)與一次函數(shù)的綜合問題,解題的關鍵是能借助全等三角形確定一些相關線段的長.18、(1)圖②結論:AF=CD+CF.(2)圖③結論:AF=CD+CF.【解析】試題分析:(1)作,的延長線交于點.證三角形全等,進而通過全等三角形的對應邊相等驗證之間的關系;(2)延長交的延長線于點由全等三角形的對應邊相等驗證關系.試題解析:(1)圖②結論:證明:作,的延長線交于點.∵四邊形是矩形,由是中點,可證≌(2)圖③結論:延長交的延長線于點如圖所示因為四邊形是平行四邊形所以//且,因為為的中點,所以也是的中點,所以又因為所以又因為所以≌所以因為19、(1)直線l與相切,見解析;(2)見解析;(3)AF=.【解析】

連接由題意可證明,于是得到,由等腰三角形三線合一的性質可證明,于是可證明,故此可證明直線l與相切;先由角平分線的定義可知,然后再證明,于是可得到,最后依據(jù)等角對等邊證明即可;先求得BE的長,然后證明∽,由相似三角形的性質可求得AE的長,于是可得到AF的長.【詳解】直線l與相切.理由:如圖1所示:連接OE.平分,.,.,.直線l與相切.平分,.又,.又,..由得.,,∽.,即,解得;..故答案為:(1)直線l與相切,見解析;(2)見解析;(3)AF=.【點睛】本題主要考查的是圓的性質、相似三角形的性質和判定、等腰三角形的性質、三角形外角的性質、切線的判定,證得是解題的關鍵.20、(1)答案見解析;(2)【解析】分析:(1)直接列舉出所有可能的結果即可.(2)畫樹狀圖展示所有16種等可能的結果數(shù),再找出他們兩人恰好選修同一門課程的結果數(shù),然后根據(jù)概率公式求解.詳解:(1)學生小紅計劃選修兩門課程,她所有可能的選法有:A書法、B閱讀;A書法、C足球;A書法、D器樂;B閱讀,C足球;B閱讀,D器樂;C足球,D器樂.共有6種等可能的結果數(shù);(2)畫樹狀圖為:共有16種等可能的結果數(shù),其中他們兩人恰好選修同一門課程的結果數(shù)為4,所以他們兩人恰好選修同一門課程的概率點睛:本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結果n,再從中選出符合事件A或B的結果數(shù)目m,然后利用概率公式計算事件A或事件B的概率.21、(1)4,1;(2)見解析;(3)1.1或3.2【解析】

(1)當x=2時,PM⊥AB,此時Q與M重合,BQ=BM=4,當x=4時,點P與B重合,此時BQ=1.(2)利用描點法畫出函數(shù)圖象即可;(3)根據(jù)直角三角形31度角的性質,求出y=2,觀察圖象寫出對應的x的值即可;【詳解】(1)當x=2時,PM⊥AB,此時Q與M重合,BQ=BM=4,當x=4時,點P與B重合,此時BQ=1.故答案為4,1.(2)函數(shù)圖象如圖所示:(3)如圖,在Rt△BQM中,∵∠Q=91°,∠MBQ=61°,∴∠BMQ=31°,∴BQ=BM=2,觀察圖象可知y=2時,對應的x的值為1.1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論