2023-2024學年上海市金山區(qū)中考數(shù)學最后一模試卷含解析_第1頁
2023-2024學年上海市金山區(qū)中考數(shù)學最后一模試卷含解析_第2頁
2023-2024學年上海市金山區(qū)中考數(shù)學最后一模試卷含解析_第3頁
2023-2024學年上海市金山區(qū)中考數(shù)學最后一模試卷含解析_第4頁
2023-2024學年上海市金山區(qū)中考數(shù)學最后一模試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年上海市金山區(qū)中考數(shù)學最后一模試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖所示,有一條線段是()的中線,該線段是().A.線段GH B.線段AD C.線段AE D.線段AF2.如圖,直角坐標平面內有一點,那么與軸正半軸的夾角的余切值為()A.2 B. C. D.3.下列成語描述的事件為隨機事件的是()A.水漲船高B.守株待兔C.水中撈月D.緣木求魚4.如圖,E為平行四邊形ABCD的邊AB延長線上的一點,且BE:AB=2:3,△BEF的面積為4,則平行四邊形ABCD的面積為()

A.30 B.27 C.14 D.325.已知,C是線段AB的黃金分割點,AC<BC,若AB=2,則BC=()A.3﹣ B.(+1) C.﹣1 D.(﹣1)6.如果-a=-aA.a(chǎn)>0 B.a(chǎn)≥0 C.a(chǎn)≤0 D.a(chǎn)<07.下列運算正確的是()A.a(chǎn)2?a3=a6 B.()﹣1=﹣2 C.=±4 D.|﹣6|=68.去年二月份,某房地產(chǎn)商將房價提高40%,在中央“房子是用來住的,不是用來炒的”指示下達后,立即降價30%.設降價后房價為x,則去年二月份之前房價為()A.(1+40%)×30%x B.(1+40%)(1﹣30%)xC. D.9.一個幾何體的三視圖如圖所示,則該幾何體的形狀可能是()A.B.C.D.10.如圖,點A、B、C是⊙O上的三點,且四邊形ABCO是平行四邊形,OF⊥OC交圓O于點F,則∠BAF等于()A.12.5° B.15° C.20° D.22.5°11.﹣3的絕對值是()A.﹣3 B.3 C.- D.12.若一個函數(shù)的圖象是經(jīng)過原點的直線,并且這條直線過點(-3,2a)和點(8a,-3),則a的值為()A.916 B.34 C.±二、填空題:(本大題共6個小題,每小題4分,共24分.)13.寫出一個一次函數(shù),使它的圖象經(jīng)過第一、三、四象限:______.14.因式分解:x2﹣3x+(x﹣3)=_____.15.如圖,把矩形紙片OABC放入平面直角坐標系中,使OA、OC分別落在x軸、y軸上,連接OB,將紙片OABC沿OB折疊,使點A落在點A′的位置,若OB=,tan∠BOC=,則點A′的坐標為_____.16.甲、乙兩人5次射擊命中的環(huán)數(shù)分別為,甲:7,9,8,6,10;乙:7,8,9,8,8;=8,則這兩人5次射擊命中的環(huán)數(shù)的方差S甲2_____S乙2(填“>”“<”或“=”).17.若a﹣3有平方根,則實數(shù)a的取值范圍是_____.18.如圖,在等腰Rt△ABC中,∠BAC=90°,AB=AC,BC=4,點D是AC邊上一動點,連接BD,以AD為直徑的圓交BD于點E,則線段CE長度的最小值為___.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,有四張背面相同的卡片A、B、C、D,卡片的正面分別印有正三角形、平行四邊形、圓、正五邊形(這些卡片除圖案不同外,其余均相同).把這四張卡片背面向上洗勻后,進行下列操作:若任意抽取其中一張卡片,抽到的卡片既是中心對稱圖形又是軸對稱圖形的概率是;若任意抽出一張不放回,然后再從余下的抽出一張.請用樹狀圖或列表表示摸出的兩張卡片所有可能的結果,求抽出的兩張卡片的圖形是中心對稱圖形的概率.20.(6分)如圖,已知拋物線(>0)與軸交于A,B兩點(A點在B點的左邊),與軸交于點C。(1)如圖1,若△ABC為直角三角形,求的值;(2)如圖1,在(1)的條件下,點P在拋物線上,點Q在拋物線的對稱軸上,若以BC為邊,以點B,C,P,Q為頂點的四邊形是平行四邊形,求P點的坐標;(3)如圖2,過點A作直線BC的平行線交拋物線于另一點D,交軸交于點E,若AE:ED=1:4,求的值.21.(6分)如圖,AB是⊙O的直徑,D、D為⊙O上兩點,CF⊥AB于點F,CE⊥AD交AD的延長線于點E,且CE=CF.(1)求證:CE是⊙O的切線;(2)連接CD、CB,若AD=CD=a,求四邊形ABCD面積.22.(8分)為了響應“足球進校園”的目標,某校計劃為學校足球隊購買一批足球,已知購買2個A品牌的足球和3個B品牌的足球共需380元;購買4個A品牌的足球和2個B品牌的足球共需360元.求A,B兩種品牌的足球的單價.求該校購買20個A品牌的足球和2個B品牌的足球的總費用.23.(8分)(1)(a﹣b)2﹣a(a﹣2b)+(2a+b)(2a﹣b)(2)(m﹣1﹣).24.(10分)如圖,已知拋物線的頂點為A(1,4),拋物線與y軸交于點B(0,3),與x軸交于C、D兩點.點P是x軸上的一個動點.求此拋物線的解析式;求C、D兩點坐標及△BCD的面積;若點P在x軸上方的拋物線上,滿足S△PCD=S△BCD,求點P的坐標.25.(10分)閱讀下列材料:數(shù)學課上老師布置一道作圖題:已知:直線l和l外一點P.求作:過點P的直線m,使得m∥l.小東的作法如下:作法:如圖2,(1)在直線l上任取點A,連接PA;(2)以點A為圓心,適當長為半徑作弧,分別交線段PA于點B,直線l于點C;(3)以點P為圓心,AB長為半徑作弧DQ,交線段PA于點D;(4)以點D為圓心,BC長為半徑作弧,交弧DQ于點E,作直線PE.所以直線PE就是所求作的直線m.老師說:“小東的作法是正確的.”請回答:小東的作圖依據(jù)是________.26.(12分)在一個不透明的布袋里裝有4個標有1、2、3、4的小球,它們的形狀、大小完全相同,李強從布袋中隨機取出一個小球,記下數(shù)字為x,王芳在剩下的3個小球中隨機取出一個小球,記下數(shù)字為y,這樣確定了點M的坐標畫樹狀圖列表,寫出點M所有可能的坐標;求點在函數(shù)的圖象上的概率.27.(12分)石獅泰禾某童裝專賣店在銷售中發(fā)現(xiàn),一款童裝每件進價為80元,銷售價為120元時,每天可售出20件,為了迎接“十一”國慶節(jié),商店決定采取適當?shù)慕祪r措施,以擴大銷售量,增加利潤,經(jīng)市場調查發(fā)現(xiàn),如果每件童裝降價1元,那么平均可多售出2件.設每件童裝降價x元時,每天可銷售______件,每件盈利______元;(用x的代數(shù)式表示)每件童裝降價多少元時,平均每天贏利1200元.要想平均每天贏利2000元,可能嗎?請說明理由.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】

根據(jù)三角形一邊的中點與此邊所對頂點的連線叫做三角形的中線逐一判斷即可得.【詳解】根據(jù)三角形中線的定義知:線段AD是△ABC的中線.故選B.【點睛】本題考查了三角形的中線,解題的關鍵是掌握三角形一邊的中點與此邊所對頂點的連線叫做三角形的中線.2、B【解析】

作PA⊥x軸于點A,構造直角三角形,根據(jù)三角函數(shù)的定義求解.【詳解】過P作x軸的垂線,交x軸于點A,

∵P(2,4),

∴OA=2,AP=4,.

∴∴.故選B.【點睛】本題考查的知識點是銳角三角函數(shù)的定義,解題關鍵是熟記三角函數(shù)的定義.3、B【解析】試題解析:水漲船高是必然事件,A不正確;守株待兔是隨機事件,B正確;水中撈月是不可能事件,C不正確緣木求魚是不可能事件,D不正確;故選B.考點:隨機事件.4、A【解析】∵四邊形ABCD是平行四邊形,∴AB//CD,AB=CD,AD//BC,∴△BEF∽△CDF,△BEF∽△AED,∴,∵BE:AB=2:3,AE=AB+BE,∴BE:CD=2:3,BE:AE=2:5,∴,∵S△BEF=4,∴S△CDF=9,S△AED=25,∴S四邊形ABFD=S△AED-S△BEF=25-4=21,∴S平行四邊形ABCD=S△CDF+S四邊形ABFD=9+21=30,故選A.【點睛】本題考查了平行四邊形的性質,相似三角形的判定與性質等,熟記相似三角形的面積等于相似比的平方是解題的關鍵.5、C【解析】

根據(jù)黃金分割點的定義,知BC為較長線段;則BC=AB,代入數(shù)據(jù)即可得出BC的值.【詳解】解:由于C為線段AB=2的黃金分割點,且AC<BC,BC為較長線段;

則BC=2×=-1.

故答案為:-1.【點睛】本題考查了黃金分割,應該識記黃金分割的公式:較短的線段=原線段的倍,較長的線段=原線段的倍.6、C【解析】

根據(jù)絕對值的性質:一個正數(shù)的絕對值是它本身,一個負數(shù)的絕對值是它的相反數(shù),1的絕對值是1.若|-a|=-a,則可求得a的取值范圍.注意1的相反數(shù)是1.【詳解】因為|-a|≥1,所以-a≥1,那么a的取值范圍是a≤1.故選C.【點睛】絕對值規(guī)律總結:一個正數(shù)的絕對值是它本身,一個負數(shù)的絕對值是它的相反數(shù),1的絕對值是1.7、D【解析】

運用正確的運算法則即可得出答案.【詳解】A、應該為a5,錯誤;B、為2,錯誤;C、為4,錯誤;D、正確,所以答案選擇D項.【點睛】本題考查了四則運算法則,熟悉掌握是解決本題的關鍵.8、D【解析】

根據(jù)題意可以用相應的代數(shù)式表示出去年二月份之前房價,本題得以解決.【詳解】由題意可得,去年二月份之前房價為:x÷(1﹣30%)÷(1+40%)=,故選:D.【點睛】本題考查了列代數(shù)式,解答本題的關鍵是明確題意,列出相應的代數(shù)式.9、D【解析】試題分析:由主視圖和左視圖可得此幾何體上面為臺,下面為柱體,由俯視圖為圓環(huán)可得幾何體為.故選D.考點:由三視圖判斷幾何體.視頻10、B【解析】

解:連接OB,∵四邊形ABCO是平行四邊形,∴OC=AB,又OA=OB=OC,∴OA=OB=AB,∴△AOB為等邊三角形,∵OF⊥OC,OC∥AB,∴OF⊥AB,∴∠BOF=∠AOF=30°,由圓周角定理得∠BAF=∠BOF=15°故選:B11、B【解析】

根據(jù)負數(shù)的絕對值是它的相反數(shù),可得出答案.【詳解】根據(jù)絕對值的性質得:|-1|=1.故選B.【點睛】本題考查絕對值的性質,需要掌握非負數(shù)的絕對值是它本身,負數(shù)的絕對值是它的相反數(shù).12、D【解析】

根據(jù)一次函數(shù)的圖象過原點得出一次函數(shù)式正比例函數(shù),設一次函數(shù)的解析式為y=kx,把點(?3,2a)與點(8a,?3)代入得出方程組2a=-3k①-3=8ak②【詳解】解:設一次函數(shù)的解析式為:y=kx,把點(?3,2a)與點(8a,?3)代入得出方程組2a=-3k①-3=8ak②由①得:k=-2把③代入②得:-3=8a×-解得:a=±3故選:D.【點睛】本題考查了用待定系數(shù)法求一次函數(shù)的解析式,主要考查學生運用性質進行計算的能力.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、y=x﹣1(答案不唯一)【解析】一次函數(shù)圖象經(jīng)過第一、三、四象限,則可知y=kx+b中k>0,b<0,由此可得如:y=x﹣1(答案不唯一).14、(x-3)(x+1);【解析】根據(jù)因式分解的概念和步驟,可先把原式化簡,然后用十字相乘分解,即原式=x2﹣3x+x﹣3=x2﹣2x﹣3=(x﹣3)(x+1);或先把前兩項提公因式,然后再把x-3看做整體提公因式:原式=x(x﹣3)+(x﹣3)=(x﹣3)(x+1).故答案為(x﹣3)(x+1).點睛:此題主要考查了因式分解,關鍵是明確因式分解是把一個多項式化為幾個因式積的形式.再利用因式分解的一般步驟:一提(公因式)、二套(平方差公式,完全平方公式)、三檢查(徹底分解),進行分解因式即可.15、【解析】

如圖,作輔助線;根據(jù)題意首先求出AB、BC的長度;借助面積公式求出A′D、OD的長度,即可解決問題.【詳解】解:∵四邊形OABC是矩形,∴OA=BC,AB=OC,tan∠BOC==,∴AB=2OA,∵,OB=,∴OA=2,AB=2.∵OA′由OA翻折得到,∴OA′=OA=2.如圖,過點A′作A′D⊥x軸與點D;設A′D=a,OD=b;∵四邊形ABCO為矩形,∴∠OAB=∠OCB=90°;四邊形ABA′D為梯形;設AB=OC=a,BC=AO=b;∵OB=,tan∠BOC=,∴,解得:;由題意得:A′O=AO=2;△ABO≌△A′BO;由勾股定理得:x2+y2=2①,由面積公式得:xy+2××2×2=(x+2)×(y+2)②;聯(lián)立①②并解得:x=,y=.故答案為(?,)【點睛】該題以平面直角坐標系為載體,以翻折變換為方法構造而成;綜合考查了矩形的性質、三角函數(shù)的定義、勾股定理等幾何知識點;對分析問題解決問題的能力提出了較高的要求.16、>【解析】

分別根據(jù)方差公式計算出甲、乙兩人的方差,再比較大小.【詳解】∵=8,∴=[(7﹣8)2+(9﹣8)2+(8﹣8)2+(6﹣8)2+(10﹣8)2]=(1+1+0+4+4)=2,=[(7﹣8)2+(8﹣8)2+(9﹣8)2+(8﹣8)2+(8﹣8)2]=(1+0+1+0+0)=0.4,∴>.故答案為:>.【點睛】本題考查了方差的意義.方差是用來衡量一組數(shù)據(jù)波動大小的量,方差越大,表明這組數(shù)據(jù)偏離平均數(shù)越大,即波動越大,數(shù)據(jù)越不穩(wěn)定;反之,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動越小,數(shù)據(jù)越穩(wěn)定.17、a≥1.【解析】

根據(jù)平方根的定義列出不等式計算即可.【詳解】根據(jù)題意,得解得:故答案為【點睛】考查平方根的定義,正數(shù)有兩個平方根,它們互為相反數(shù),0的平方根是0,負數(shù)沒有平方根.18、﹣2【解析】

連結AE,如圖1,先根據(jù)等腰直角三角形的性質得到AB=AC=4,再根據(jù)圓周角定理,由AD為直徑得到∠AED=90°,接著由∠AEB=90°得到點E在以AB為直徑的O上,于是當點O、E、C共線時,CE最小,如圖2,在Rt△AOC中利用勾股定理計算出OC=2,從而得到CE的最小值為2﹣2.【詳解】連結AE,如圖1,∵∠BAC=90°,AB=AC,BC=,∴AB=AC=4,∵AD為直徑,∴∠AED=90°,∴∠AEB=90°,∴點E在以AB為直徑的O上,∵O的半徑為2,∴當點O、E.C共線時,CE最小,如圖2在Rt△AOC中,∵OA=2,AC=4,∴OC=,∴CE=OC?OE=2﹣2,即線段CE長度的最小值為2﹣2.故答案為:2﹣2.【點睛】此題考查等腰直角三角形的性質,圓周角定理,勾股定理,解題關鍵在于結合實際運用圓的相關性質.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1);(2).【解析】

(1)既是中心對稱圖形又是軸對稱圖形只有圓一個圖形,然后根據(jù)概率的意義解答即可;(2)畫出樹狀圖,然后根據(jù)概率公式列式計算即可得解.【詳解】(1)∵正三角形、平行四邊形、圓、正五邊形中只有圓既是中心對稱圖形又是軸對稱圖形,∴抽到的卡片既是中心對稱圖形又是軸對稱圖形的概率是;(2)根據(jù)題意畫出樹狀圖如下:一共有12種情況,抽出的兩張卡片的圖形是中心對稱圖形的是B、C共有2種情況,所以,P(抽出的兩張卡片的圖形是中心對稱圖形).【點睛】本題考查了列表法和樹狀圖法,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.20、(1);(2)點P的坐標為;(3).【解析】

(1)利用三角形相似可求AO?OB,再由一元二次方程根與系數(shù)關系求AO?OB構造方程求n;(2)求出B、C坐標,設出點Q坐標,利用平行四邊形對角線互相平分性質,分類討論點P坐標,分別代入拋物線解析式,求出Q點坐標;(3)設出點D坐標(a,b),利用相似表示OA,再由一元二次方程根與系數(shù)關系表示OB,得到點B坐標,進而找到b與a關系,代入拋物線求a、n即可.【詳解】(1)若△ABC為直角三角形∴△AOC∽△COB∴OC2=AO?OB當y=0時,0=x2-x-n由一元二次方程根與系數(shù)關系-OA?OB=OC2n2==?2n解得n=0(舍去)或n=2∴拋物線解析式為y=;(2)由(1)當=0時解得x1=-1,x2=4∴OA=1,OB=4∴B(4,0),C(0,-2)∵拋物線對稱軸為直線x=-=?∴設點Q坐標為(,b)由平行四邊形性質可知當BQ、CP為平行四邊形對角線時,點P坐標為(,b+2)代入y=x2-x-2解得b=,則P點坐標為(,)當CQ、PB為為平行四邊形對角線時,點P坐標為(-,b-2)代入y=x2-x-2解得b=,則P坐標為(-,)綜上點P坐標為(,),(-,);(3)設點D坐標為(a,b)∵AE:ED=1:4則OE=b,OA=a∵AD∥AB∴△AEO∽△BCO∵OC=n∴∴OB=由一元二次方程根與系數(shù)關系得,∴b=a2將點A(-a,0),D(a,a2)代入y=x2-x-n解得a=6或a=0(舍去)則n=.【點睛】本題是代數(shù)幾何綜合題,考查了二次函數(shù)圖象性質、一元二次方程根與系數(shù)關系、三角形相似以及平行四邊形的性質,解答關鍵是綜合運用數(shù)形結合分類討論思想.21、(1)證明見解析;(2)3【解析】

(1)連接OC,AC,可先證明AC平分∠BAE,結合圓的性質可證明OC∥AE,可得∠OCB=90°,可證得結論;(2)可先證得四邊形AOCD為平行四邊形,再證明△OCB為等邊三角形,可求得CF、AB,利用梯形的面積公式可求得答案.【詳解】(1)證明:連接OC,AC.∵CF⊥AB,CE⊥AD,且CE=CF.∴∠CAE=∠CAB.∵OC=OA,∴∠CAB=∠OCA.∴∠CAE=∠OCA.∴OC∥AE.∴∠OCE+∠AEC=180°,∵∠AEC=90°,∴∠OCE=90°即OC⊥CE,∵OC是⊙O的半徑,點C為半徑外端,∴CE是⊙O的切線.(2)解:∵AD=CD,∴∠DAC=∠DCA=∠CAB,∴DC∥AB,∵∠CAE=∠OCA,∴OC∥AD,∴四邊形AOCD是平行四邊形,∴OC=AD=a,AB=2a,∵∠CAE=∠CAB,∴CD=CB=a,∴CB=OC=OB,∴△OCB是等邊三角形,在Rt△CFB中,CF=CB∴S四邊形ABCD=12(DC+AB)?CF=【點睛】本題主要考查切線的判定,掌握切線的兩種判定方法是解題的關鍵,即有切點時連接圓心和切點,然后證明垂直,沒有切點時,過圓心作垂直,證明圓心到直線的距離等于半徑.22、(1)一個A品牌的足球需90元,則一個B品牌的足球需100元;(2)1.【解析】

(1)設一個A品牌的足球需x元,則一個B品牌的足球需y元,根據(jù)“購買2個A品牌的足球和3個B品牌的足球共需380元;購買4個A品牌的足球和2個B品牌的足球共需360元”列出方程組并解答;(2)把(1)中的數(shù)據(jù)代入求值即可.【詳解】(1)設一個A品牌的足球需x元,則一個B品牌的足球需y元,依題意得:,解得:.答:一個A品牌的足球需40元,則一個B品牌的足球需100元;(2)依題意得:20×40+2×100=1(元).答:該校購買20個A品牌的足球和2個B品牌的足球的總費用是1元.考點:二元一次方程組的應用.23、(1);(2)【解析】試題分析:(1)先去括號,再合并同類項即可;(2)先計算括號里的,再將除法轉換在乘法計算.試題解析:(1)(a﹣b)2﹣a(a﹣2b)+(2a+b)(2a﹣b)=a2﹣2ab+b2﹣a2+2ab+4a2﹣b2=4a2;(2).====.24、(1)y=﹣(x﹣1)2+4;(2)C(﹣1,0),D(3,0);6;(3)P(1+,),或P(1﹣,)【解析】

(1)設拋物線頂點式解析式y(tǒng)=a(x-1)2+4,然后把點B的坐標代入求出a的值,即可得解;

(2)令y=0,解方程得出點C,D坐標,再用三角形面積公式即可得出結論;

(3)先根據(jù)面積關系求出點P的坐標,求出點P的縱坐標,代入拋物線解析式即可求出點P的坐標.【詳解】解:(1)、∵拋物線的頂點為A(1,4),∴設拋物線的解析式y(tǒng)=a(x﹣1)2+4,把點B(0,3)代入得,a+4=3,解得a=﹣1,∴拋物線的解析式為y=﹣(x﹣1)2+4;(2)由(1)知,拋物線的解析式為y=﹣(x﹣1)2+4;令y=0,則0=﹣(x﹣1)2+4,∴x=﹣1或x=3,∴C(﹣1,0),D(3,0);∴CD=4,∴S△BCD=CD×|yB|=×4×3=6;(3)由(2)知,S△BCD=CD×|yB|=×4×3=6;CD=4,∵S△PCD=S△BCD,∴S△PCD=CD×|yP|=×4×|yP|=3,∴|yP|=,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論