版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆河南省普通高中學(xué)招生考試模擬試卷重點達(dá)標(biāo)名校中考數(shù)學(xué)全真模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下列計算正確的是()A.2x2-3x2=x2 B.x+x=x2 C.-(x-1)=-x+1 D.3+x=3x2.下列計算正確的是()A.2x﹣x=1 B.x2?x3=x6C.(m﹣n)2=m2﹣n2 D.(﹣xy3)2=x2y63.若點A(a,b),B(,c)都在反比例函數(shù)y=的圖象上,且﹣1<c<0,則一次函數(shù)y=(b﹣c)x+ac的大致圖象是()A. B.C. D.4.某自行車廠準(zhǔn)備生產(chǎn)共享單車4000輛,在生產(chǎn)完1600輛后,采用了新技術(shù),使得工作效率比原來提高了20%,結(jié)果共用了18天完成任務(wù),若設(shè)原來每天生產(chǎn)自行車x輛,則根據(jù)題意可列方程為()A.+=18 B.=18C.+=18 D.=185.如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸的正半軸相交于A,B兩點,與y軸相交于點C,對稱軸為直線x=2,且OA=OC.有下列結(jié)論:①abc<0;②3b+4c<0;③c>﹣1;④關(guān)于x的方程ax2+bx+c=0有一個根為﹣,其中正確的結(jié)論個數(shù)是()A.1 B.2 C.3 D.46.方程(m–2)x2+3mx+1=0是關(guān)于x的一元二次方程,則()A.m≠±2 B.m=2 C.m=–2 D.m≠27.下列關(guān)于x的方程中,屬于一元二次方程的是()A.x﹣1=0 B.x2+3x﹣5=0 C.x3+x=3 D.a(chǎn)x2+bx+c=08.如圖,AB∥CD,DE⊥CE,∠1=34°,則∠DCE的度數(shù)為()A.34° B.56° C.66° D.54°9.用加減法解方程組時,若要求消去,則應(yīng)()A. B. C. D.10.二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,下列四個結(jié)論:①4a+c<0;②m(am+b)+b>a(m≠﹣1);③關(guān)于x的一元二次方程ax2+(b﹣1)x+c=0沒有實數(shù)根;④ak4+bk2<a(k2+1)2+b(k2+1)(k為常數(shù)).其中正確結(jié)論的個數(shù)是()A.4個 B.3個 C.2個 D.1個11.如圖,四邊形ABCD內(nèi)接于⊙O,AD∥BC,BD平分∠ABC,∠A=130°,則∠BDC的度數(shù)為()A.100° B.105° C.110° D.115°12.在剛過去的2017年,我國整體經(jīng)濟(jì)實力躍上了一個新臺階,城鎮(zhèn)新增就業(yè)1351萬人,數(shù)據(jù)“1351萬”用科學(xué)記數(shù)法表示為()A.13.51×106 B.1.351×107 C.1.351×106 D.0.1531×108二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,已知∠A+∠C=180°,∠APM=118°,則∠CQN=_____°.14.已知是二元一次方程組的解,則m+3n的立方根為__.15.一元二次方程x2﹣4=0的解是._________16.若不等式組1-x≤2,x>m有解,則17.已知數(shù)據(jù)x1,x2,…,xn的平均數(shù)是,則一組新數(shù)據(jù)x1+8,x2+8,…,xn+8的平均數(shù)是____.18.如圖,在等腰中,,點在以斜邊為直徑的半圓上,為的中點.當(dāng)點沿半圓從點運動至點時,點運動的路徑長是________.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)某公司銷售一種新型節(jié)能電子小產(chǎn)品,現(xiàn)準(zhǔn)備從國內(nèi)和國外兩種銷售方案中選擇一種進(jìn)行銷售:①若只在國內(nèi)銷售,銷售價格y(元/件)與月銷量x(件)的函數(shù)關(guān)系式為y=-x+150,成本為20元/件,月利潤為W內(nèi)(元);②若只在國外銷售,銷售價格為150元/件,受各種不確定因素影響,成本為a元/件(a為常數(shù),10≤a≤40),當(dāng)月銷量為x(件)時,每月還需繳納x2元的附加費,月利潤為W外(元).(1)若只在國內(nèi)銷售,當(dāng)x=1000(件)時,y=(元/件);(2)分別求出W內(nèi)、W外與x間的函數(shù)關(guān)系式(不必寫x的取值范圍);(3)若在國外銷售月利潤的最大值與在國內(nèi)銷售月利潤的最大值相同,求a的值.20.(6分)如圖,在△ABC中,(1)求作:∠BAD=∠C,AD交BC于D.(用尺規(guī)作圖法,保留作圖痕跡,不要求寫作法).(2)在(1)條件下,求證:AB2=BD?BC.21.(6分)先化簡,再求值:(﹣a)÷(1+),其中a是不等式﹣<a<的整數(shù)解.22.(8分)如圖,拋物線(a≠0)交x軸于A、B兩點,A點坐標(biāo)為(3,0),與y軸交于點C(0,4),以O(shè)C、OA為邊作矩形OADC交拋物線于點G.求拋物線的解析式;拋物線的對稱軸l在邊OA(不包括O、A兩點)上平行移動,分別交x軸于點E,交CD于點F,交AC于點M,交拋物線于點P,若點M的橫坐標(biāo)為m,請用含m的代數(shù)式表示PM的長;在(2)的條件下,連結(jié)PC,則在CD上方的拋物線部分是否存在這樣的點P,使得以P、C、F為頂點的三角形和△AEM相似?若存在,求出此時m的值,并直接判斷△PCM的形狀;若不存在,請說明理由.23.(8分)如果一條拋物線與軸有兩個交點,那么以該拋物線的頂點和這兩個交點為頂點的三角形稱為這條拋物線的“拋物線三角形”.(1)“拋物線三角形”一定是三角形;(2)若拋物線的“拋物線三角形”是等腰直角三角形,求的值;(3)如圖,△是拋物線的“拋物線三角形”,是否存在以原點為對稱中心的矩形?若存在,求出過三點的拋物線的表達(dá)式;若不存在,說明理由.24.(10分)(14分)如圖,在平面直角坐標(biāo)系中,拋物線y=mx2﹣8mx+4m+2(m>2)與y軸的交點為A,與x軸的交點分別為B(x1,0),C(x2,0),且x2﹣x1=4,直線AD∥x軸,在x軸上有一動點E(t,0)過點E作平行于y軸的直線l與拋物線、直線AD的交點分別為P、Q.(1)求拋物線的解析式;(2)當(dāng)0<t≤8時,求△APC面積的最大值;(3)當(dāng)t>2時,是否存在點P,使以A、P、Q為頂點的三角形與△AOB相似?若存在,求出此時t的值;若不存在,請說明理由.25.(10分)“足球運球”是中考體育必考項目之一.蘭州市某學(xué)校為了解今年九年級學(xué)生足球運球的掌握情況,隨機(jī)抽取部分九年級學(xué)生足球運球的測試成績作為一個樣本,按A,B,C,D四個等級進(jìn)行統(tǒng)計,制成了如下不完整的統(tǒng)計圖.(說明:A級:8分﹣10分,B級:7分﹣7.9分,C級:6分﹣6.9分,D級:1分﹣5.9分)根據(jù)所給信息,解答以下問題:(1)在扇形統(tǒng)計圖中,C對應(yīng)的扇形的圓心角是_____度;(2)補(bǔ)全條形統(tǒng)計圖;(3)所抽取學(xué)生的足球運球測試成績的中位數(shù)會落在_____等級;(4)該校九年級有300名學(xué)生,請估計足球運球測試成績達(dá)到A級的學(xué)生有多少人?26.(12分)已知:如圖,在菱形中,點,,分別為,,的中點,連接,,,.求證:;當(dāng)與滿足什么關(guān)系時,四邊形是正方形?請說明理由.27.(12分)當(dāng)前,“精準(zhǔn)扶貧”工作已進(jìn)入攻堅階段,凡貧困家庭均要“建檔立卡”.某初級中學(xué)七年級共有四個班,已“建檔立卡”的貧困家庭的學(xué)生人數(shù)按一、二、三、四班分別記為A1,A2,A3,A4,現(xiàn)對A1,A2,A3,A4統(tǒng)計后,制成如圖所示的統(tǒng)計圖.求七年級已“建檔立卡”的貧困家庭的學(xué)生總?cè)藬?shù);將條形統(tǒng)計圖補(bǔ)充完整,并求出A1所在扇形的圓心角的度數(shù);現(xiàn)從A1,A2中各選出一人進(jìn)行座談,若A1中有一名女生,A2中有兩名女生,請用樹狀圖表示所有可能情況,并求出恰好選出一名男生和一名女生的概率.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】
根據(jù)合并同類項法則和去括號法則逐一判斷即可得.【詳解】解:A.2x2-3x2=-x2,故此選項錯誤;
B.x+x=2x,故此選項錯誤;
C.-(x-1)=-x+1,故此選項正確;
D.3與x不能合并,此選項錯誤;
故選C.【點睛】本題考查了整式的加減,熟練掌握運算法則是解題的關(guān)鍵.2、D【解析】
根據(jù)合并同類項的法則,積的乘方,完全平方公式,同底數(shù)冪的乘法的性質(zhì),對各選項分析判斷后利用排除法求解.【詳解】解:A、2x-x=x,錯誤;B、x2?x3=x5,錯誤;C、(m-n)2=m2-2mn+n2,錯誤;D、(-xy3)2=x2y6,正確;故選D.【點睛】考查了整式的運算能力,對于相關(guān)的整式運算法則要求學(xué)生很熟練,才能正確求出結(jié)果.3、D【解析】
將,代入,得,,然后分析與的正負(fù),即可得到的大致圖象.【詳解】將,代入,得,,即,.∴.∵,∴,∴.即與異號.∴.又∵,故選D.【點睛】本題考查了反比例函數(shù)圖像上點的坐標(biāo)特征,一次函數(shù)的圖像與性質(zhì),得出與的正負(fù)是解答本題的關(guān)鍵.4、B【解析】
根據(jù)前后的時間和是18天,可以列出方程.【詳解】若設(shè)原來每天生產(chǎn)自行車x輛,根據(jù)前后的時間和是18天,可以列出方程.故選B【點睛】本題考核知識點:分式方程的應(yīng)用.解題關(guān)鍵點:根據(jù)時間關(guān)系,列出分式方程.5、B【解析】
由二次函數(shù)圖象的開口方向、對稱軸及與y軸的交點可分別判斷出a、b、c的符號,從而可判斷①;由對稱軸=2可知a=,由圖象可知當(dāng)x=1時,y>0,可判斷②;由OA=OC,且OA<1,可判斷③;把-代入方程整理可得ac2-bc+c=0,結(jié)合③可判斷④;從而可得出答案.【詳解】解:∵圖象開口向下,∴a<0,∵對稱軸為直線x=2,∴>0,∴b>0,∵與y軸的交點在x軸的下方,∴c<0,∴abc>0,故①錯誤.∵對稱軸為直線x=2,∴=2,∴a=,∵由圖象可知當(dāng)x=1時,y>0,∴a+b+c>0,∴4a+4b+4c>0,∴4()+4b+4c>0,∴3b+4c>0,故②錯誤.∵由圖象可知OA<1,且OA=OC,∴OC<1,即-c<1,∴c>-1,故③正確.∵假設(shè)方程的一個根為x=-,把x=-代入方程可得+c=0,整理可得ac-b+1=0,兩邊同時乘c可得ac2-bc+c=0,∴方程有一個根為x=-c,由③可知-c=OA,而當(dāng)x=OA是方程的根,∴x=-c是方程的根,即假設(shè)成立,故④正確.綜上可知正確的結(jié)論有三個:③④.故選B.【點睛】本題主要考查二次函數(shù)的圖象和性質(zhì).熟練掌握圖象與系數(shù)的關(guān)系以及二次函數(shù)與方程、不等式的關(guān)系是解題的關(guān)鍵.特別是利用好題目中的OA=OC,是解題的關(guān)鍵.6、D【解析】試題分析:根據(jù)一元二次方程的概念,可知m-2≠0,解得m≠2.故選D7、B【解析】
根據(jù)一元二次方程必須同時滿足三個條件:①整式方程,即等號兩邊都是整式;方程中如果有分母,那么分母中無未知數(shù);②只含有一個未知數(shù);③未知數(shù)的最高次數(shù)是2進(jìn)行分析即可.【詳解】A.未知數(shù)的最高次數(shù)不是2
,不是一元二次方程,故此選項錯誤;
B.
是一元二次方程,故此選項正確;
C.
未知數(shù)的最高次數(shù)是3,不是一元二次方程,故此選項錯誤;
D.
a=0時,不是一元二次方程,故此選項錯誤;
故選B.【點睛】本題考查一元二次方程的定義,解題的關(guān)鍵是明白:一元二次方程必須同時滿足三個條件:①整式方程,即等號兩邊都是整式;方程中如果有分母,那么分母中無未知數(shù);②只含有一個未知數(shù);③未知數(shù)的最高次數(shù)是2.8、B【解析】試題分析:∵AB∥CD,∴∠D=∠1=34°,∵DE⊥CE,∴∠DEC=90°,∴∠DCE=180°﹣90°﹣34°=56°.故選B.考點:平行線的性質(zhì).9、C【解析】
利用加減消元法消去y即可.【詳解】用加減法解方程組時,若要求消去y,則應(yīng)①×5+②×3,
故選C【點睛】此題考查了解二元一次方程組,利用了消元的思想,消元的方法有:代入消元法與加減消元法.10、D【解析】①因為二次函數(shù)的對稱軸是直線x=﹣1,由圖象可得左交點的橫坐標(biāo)大于﹣3,小于﹣2,所以﹣=﹣1,可得b=2a,當(dāng)x=﹣3時,y<0,即9a﹣3b+c<0,9a﹣6a+c<0,3a+c<0,∵a<0,∴4a+c<0,所以①選項結(jié)論正確;②∵拋物線的對稱軸是直線x=﹣1,∴y=a﹣b+c的值最大,即把x=m(m≠﹣1)代入得:y=am2+bm+c<a﹣b+c,∴am2+bm<a﹣b,m(am+b)+b<a,所以此選項結(jié)論不正確;③ax2+(b﹣1)x+c=0,△=(b﹣1)2﹣4ac,∵a<0,c>0,∴ac<0,∴﹣4ac>0,∵(b﹣1)2≥0,∴△>0,∴關(guān)于x的一元二次方程ax2+(b﹣1)x+c=0有實數(shù)根;④由圖象得:當(dāng)x>﹣1時,y隨x的增大而減小,∵當(dāng)k為常數(shù)時,0≤k2≤k2+1,∴當(dāng)x=k2的值大于x=k2+1的函數(shù)值,即ak4+bk2+c>a(k2+1)2+b(k2+1)+c,ak4+bk2>a(k2+1)2+b(k2+1),所以此選項結(jié)論不正確;所以正確結(jié)論的個數(shù)是1個,故選D.11、B【解析】
根據(jù)圓內(nèi)接四邊形的性質(zhì)得出∠C的度數(shù),進(jìn)而利用平行線的性質(zhì)得出∠ABC的度數(shù),利用角平分線的定義和三角形內(nèi)角和解答即可.【詳解】∵四邊形ABCD內(nèi)接于⊙O,∠A=130°,
∴∠C=180°-130°=50°,
∵AD∥BC,
∴∠ABC=180°-∠A=50°,
∵BD平分∠ABC,
∴∠DBC=25°,
∴∠BDC=180°-25°-50°=105°,
故選:B.【點睛】本題考查了圓內(nèi)接四邊形的性質(zhì),關(guān)鍵是根據(jù)圓內(nèi)接四邊形的性質(zhì)得出∠C的度數(shù).12、B【解析】
根據(jù)科學(xué)記數(shù)法進(jìn)行解答.【詳解】1315萬即13510000,用科學(xué)記數(shù)法表示為1.351×107.故選擇B.【點睛】本題主要考查科學(xué)記數(shù)法,科學(xué)記數(shù)法表示數(shù)的標(biāo)準(zhǔn)形式是a×10n(1≤│a│<10且n為整數(shù)).二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1【解析】
先根據(jù)同旁內(nèi)角互補(bǔ)兩直線平行知AB∥CD,據(jù)此依據(jù)平行線性質(zhì)知∠APM=∠CQM=118°,由鄰補(bǔ)角定義可得答案.【詳解】解:∵∠A+∠C=180°,∴AB∥CD,∴∠APM=∠CQM=118°,∴∠CQN=180°-∠CQM=1°,故答案為:1.【點睛】本題主要考查平行線的判定與性質(zhì),解題的關(guān)鍵是掌握平行線的判定是由角的數(shù)量關(guān)系判斷兩直線的位置關(guān)系.平行線的性質(zhì)是由平行關(guān)系來尋找角的數(shù)量關(guān)系.14、3【解析】
把x與y的值代入方程組求出m與n的值,即可確定出所求.【詳解】解:把代入方程組得:相加得:m+3n=27,則27的立方根為3,故答案為3【點睛】此題考查了二元一次方程組的解,方程組的解即為能使方程組中兩方程左右兩邊相等的未知數(shù)的值.15、x=±1【解析】移項得x1=4,∴x=±1.故答案是:x=±1.16、m<2【解析】分析:解出不等式組的解集,然后根據(jù)解集的取值范圍來確定m的取值范圍.解答:解:由1-x≤2得x≥-1又∵x>m根據(jù)同大取大的原則可知:若不等式組的解集為x≥-1時,則m≤-1若不等式組的解集為x≥m時,則m≥-1.故填m≤-1或m≥-1.點評:本題是已知不等式組的解集,求不等式中另一未知數(shù)的問題.可以先將另一未知數(shù)當(dāng)作已知處理,求出解集再利用不等式組的解集的確定原則來確定未知數(shù)的取值范圍.17、【解析】
根據(jù)數(shù)據(jù)x1,x2,…,xn的平均數(shù)為=(x1+x2+…+xn),即可求出數(shù)據(jù)x1+1,x2+1,…,xn+1的平均數(shù).【詳解】數(shù)據(jù)x1+1,x2+1,…,xn+1的平均數(shù)=(x1+1+x2+1+…+xn+1)=(x1+x2+…+xn)+1=+1.故答案為+1.【點睛】本題考查了平均數(shù)的概念,平均數(shù)是指在一組數(shù)據(jù)中所有數(shù)據(jù)之和再除以數(shù)據(jù)的個數(shù).平均數(shù)是表示一組數(shù)據(jù)集中趨勢的量數(shù),它是反映數(shù)據(jù)集中趨勢的一項指標(biāo).18、π【解析】
取的中點,取的中點,連接,,,則,故的軌跡為以為圓心,為半徑的半圓弧,根據(jù)弧長公式即可得軌跡長.【詳解】解:如圖,取的中點,取的中點,連接,,,∵在等腰中,,點在以斜邊為直徑的半圓上,∴,∵為的中位線,∴,∴當(dāng)點沿半圓從點運動至點時,點的軌跡為以為圓心,為半徑的半圓弧,∴弧長,故答案為:.【點睛】本題考查了點的軌跡與等腰三角形的性質(zhì).解決動點問題的關(guān)鍵是在運動中,把握不變的等量關(guān)系(或函數(shù)關(guān)系),通過固定的等量關(guān)系(或函數(shù)關(guān)系),解決動點的軌跡或坐標(biāo)問題.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)140;(2)W內(nèi)=-x2+130x,W外=-x2+(150-a)x;(3)a=1.【解析】試題分析:(1)將x=1000代入函數(shù)關(guān)系式求得y,;(2)根據(jù)等量關(guān)系“利潤=銷售額﹣成本”“利潤=銷售額﹣成本﹣附加費”列出函數(shù)關(guān)系式;(3)對w內(nèi)函數(shù)的函數(shù)關(guān)系式求得最大值,再求出w外的最大值并令二者相等求得a值.試題解析:(1)x=1000,y=-×1000+150=140;(2)W內(nèi)=(y-1)x=(-x+150-1)x=-x2+130x.W外=(150-a)x-x2=-x2+(150-a)x;(3)W內(nèi)=-x2+130x=-(x-6500)2+2,由W外=-x2+(150-a)x得:W外最大值為:(750-5a)2,所以:(750-5a)2=2.解得a=280或a=1.經(jīng)檢驗,a=280不合題意,舍去,∴a=1.考點:二次函數(shù)的應(yīng)用.20、(1)作圖見解析;(2)證明見解析;【解析】
(1)①以C為圓心,任意長為半徑畫弧,交CB、CA于E、F;②以A為圓心,CE長為半徑畫弧,交AB于G;③以G為圓心,EF長為半徑畫弧,兩弧交于H;④連接AH并延長交BC于D,則∠BAD=∠C;(2)證明△ABD∽△CBA,然后根據(jù)相似三角形的性質(zhì)得到結(jié)論.【詳解】(1)如圖,∠BAD為所作;(2)∵∠BAD=∠C,∠B=∠B∴△ABD∽△CBA,∴AB:BC=BD:AB,∴AB2=BD?BC.【點睛】本題考查了基本作圖:熟練掌握基本作圖(作一條線段等于已知線段;作一個角等于已知角;作已知線段的垂直平分線;作已知角的角平分線;過一點作已知直線的垂線).也考查了相似三角形的判定與性質(zhì).21、,1.【解析】
首先化簡(﹣a)÷(1+),然后根據(jù)a是不等式﹣<a<的整數(shù)解,求出a的值,再把求出的a的值代入化簡后的算式,求出算式的值是多少即可.【詳解】解:(﹣a)÷(1+)=×=,∵a是不等式﹣<a<的整數(shù)解,∴a=﹣1,1,1,∵a≠1,a+1≠1,∴a≠1,﹣1,∴a=1,當(dāng)a=1時,原式==1.22、(1)拋物線的解析式為;(2)PM=(0<m<3);(3)存在這樣的點P使△PFC與△AEM相似.此時m的值為或1,△PCM為直角三角形或等腰三角形.【解析】
(1)將A(3,0),C(0,4)代入,運用待定系數(shù)法即可求出拋物線的解析式.(2)先根據(jù)A、C的坐標(biāo),用待定系數(shù)法求出直線AC的解析式,從而根據(jù)拋物線和直線AC的解析式分別表示出點P、點M的坐標(biāo),即可得到PM的長.(3)由于∠PFC和∠AEM都是直角,F(xiàn)和E對應(yīng),則若以P、C、F為頂點的三角形和△AEM相似時,分兩種情況進(jìn)行討論:①△PFC∽△AEM,②△CFP∽△AEM;可分別用含m的代數(shù)式表示出AE、EM、CF、PF的長,根據(jù)相似三角形對應(yīng)邊的比相等列出比例式,求出m的值,再根據(jù)相似三角形的性質(zhì),直角三角形、等腰三角形的判定判斷出△PCM的形狀.【詳解】解:(1)∵拋物線(a≠0)經(jīng)過點A(3,0),點C(0,4),∴,解得.∴拋物線的解析式為.(2)設(shè)直線AC的解析式為y=kx+b,∵A(3,0),點C(0,4),∴,解得.∴直線AC的解析式為.∵點M的橫坐標(biāo)為m,點M在AC上,∴M點的坐標(biāo)為(m,).∵點P的橫坐標(biāo)為m,點P在拋物線上,∴點P的坐標(biāo)為(m,).∴PM=PE-ME=()-()=.∴PM=(0<m<3).(3)在(2)的條件下,連接PC,在CD上方的拋物線部分存在這樣的點P,使得以P、C、F為頂點的三角形和△AEM相似.理由如下:由題意,可得AE=3﹣m,EM=,CF=m,PF==,若以P、C、F為頂點的三角形和△AEM相似,分兩種情況:①若△PFC∽△AEM,則PF:AE=FC:EM,即():(3-m)=m:(),∵m≠0且m≠3,∴m=.∵△PFC∽△AEM,∴∠PCF=∠AME.∵∠AME=∠CMF,∴∠PCF=∠CMF.在直角△CMF中,∵∠CMF+∠MCF=90°,∴∠PCF+∠MCF=90°,即∠PCM=90°.∴△PCM為直角三角形.②若△CFP∽△AEM,則CF:AE=PF:EM,即m:(3-m)=():(),∵m≠0且m≠3,∴m=1.∵△CFP∽△AEM,∴∠CPF=∠AME.∵∠AME=∠CMF,∴∠CPF=∠CMF.∴CP=CM.∴△PCM為等腰三角形.綜上所述,存在這樣的點P使△PFC與△AEM相似.此時m的值為或1,△PCM為直角三角形或等腰三角形.23、(1)等腰(2)(3)存在,【解析】解:(1)等腰(2)∵拋物線的“拋物線三角形”是等腰直角三角形,∴該拋物線的頂點滿足.∴.(3)存在.如圖,作△與△關(guān)于原點中心對稱,則四邊形為平行四邊形.當(dāng)時,平行四邊形為矩形.又∵,∴△為等邊三角形.作,垂足為.∴.∴.∴.∴,.∴,.設(shè)過點三點的拋物線,則解之,得∴所求拋物線的表達(dá)式為.24、(1)y=14x2-2x+3【解析】試題分析:(1)首先利用根與系數(shù)的關(guān)系得出:x1+x2=8試題解析:解:(1)由題意知x1、x2是方程mx2﹣8mx+4m+2=0的兩根,∴x1+x2=8,由.解得:.∴B(2,0)、C(6,0)則4m﹣16m+4m+2=0,解得:m=,∴該拋物線解析式為:y=;.(2)可求得A(0,3)設(shè)直線AC的解析式為:y=kx+b,∵∴∴直線AC的解析式為:y=﹣x+3,要構(gòu)成△APC,顯然t≠6,分兩種情況討論:當(dāng)0<t<6時,設(shè)直線l與AC交點為F,則:F(t,﹣),∵P(t,),∴PF=,∴S△APC=S△APF+S△CPF===,此時最大值為:,②當(dāng)6≤t≤8時,設(shè)直線l與AC交點為M,則:M(t,﹣),∵P(t,),∴PM=,∴S△APC=S△APF﹣S△CPF===,當(dāng)t=8時,取最大值,最大值為:12,綜上可知,當(dāng)0<t≤8時,△APC面積的最大值為12;(3)如圖,連接AB,則△AOB中,∠AOB=90°,AO=3,BO=2,Q(t,3),P(t,),①當(dāng)2<t≤6時,AQ=t,PQ=,若:△AOB∽△AQP,則:,即:,∴t=0(舍),或t=,若△AOB∽△PQA,則:,即:,∴t=0(舍)或t=2(舍),②當(dāng)t>6時,AQ′=t,PQ′=,若:△AOB∽△AQP,則:,即:,∴t=0(舍),或t=,若△AOB∽△PQA,則:,即:,∴t=0(舍)或t=1,∴t=或t=或t=1.考點:二次函數(shù)綜合題.25、(1)117;(2)答案見圖;(3)B;(4)30.【解析】
(1)先根據(jù)B等級人數(shù)及其百分比求得總?cè)藬?shù),總?cè)藬?shù)減去其他等級人數(shù)求得C等級人數(shù),繼而用360°乘以C等級人數(shù)所占比例即可得;(2)根據(jù)以上所求結(jié)果即可補(bǔ)全圖形;(3)根據(jù)中位數(shù)的定義求
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 總平工程施工方案
- 2025年中國風(fēng)冷模塊式冷熱水機(jī)組市場調(diào)查研究報告
- 2025年中國繞線器地板夾市場調(diào)查研究報告
- 大型貨物道路運輸政策研究考核試卷
- 2025年中國扎染絲巾市場調(diào)查研究報告
- 課程設(shè)計水利水電專業(yè)
- 樓蓋課程設(shè)計答辯
- 2025至2031年中國真空壓縮床行業(yè)投資前景及策略咨詢研究報告
- 銑床搖桿課程設(shè)計
- 機(jī)械原理自由度課程設(shè)計
- 基礎(chǔ)plc自學(xué)入門單選題100道及答案解析
- 2023年航天器熱控系統(tǒng)行業(yè)分析報告及未來五至十年行業(yè)發(fā)展報告
- 2024新一代變電站集中監(jiān)控系統(tǒng)系列規(guī)范第1部分:總則
- 關(guān)于提升高寒缺氧氣候條件下隊伍綜合救援水平的思考
- 2024年四川省成都市錦江區(qū)中考數(shù)學(xué)一診試卷(附答案解析)
- 小學(xué)生中醫(yī)藥文化知識科普傳承中醫(yī)文化弘揚國粹精神課件
- ASME材料-設(shè)計許用應(yīng)力
- 吸痰護(hù)理操作
- 室內(nèi)燈光設(shè)計總結(jié)報告
- 子宮動脈栓塞術(shù)后的護(hù)理
- 五年級數(shù)學(xué)(小數(shù)乘法)計算題及答案
評論
0/150
提交評論