版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
河北省高陽縣重點名校2023-2024學年中考數(shù)學押題卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.已知點為某封閉圖形邊界上一定點,動點從點出發(fā),沿其邊界順時針勻速運動一周.設點運動的時間為,線段的長為.表示與的函數(shù)關系的圖象大致如右圖所示,則該封閉圖形可能是()A. B. C. D.2.的相反數(shù)是()A. B.- C. D.3.如圖,直線AB與直線CD相交于點O,E是∠COB內一點,且OE⊥AB,∠AOC=35°,則∠EOD的度數(shù)是()A.155° B.145° C.135° D.125°4.如圖,在△ABC中,BC=8,AB的中垂線交BC于D,AC的中垂線交BC于E,則△ADE的周長等于()A.8 B.4 C.12 D.165.用加減法解方程組時,如果消去y,最簡捷的方法是()A.①×4﹣②×3 B.①×4+②×3 C.②×2﹣① D.②×2+①6.下列圖形中,是中心對稱圖形但不是軸對稱圖形的是()A. B. C. D.7.如圖,在△ABC中,AC=BC,∠ACB=90°,點D在BC上,BD=3,DC=1,點P是AB上的動點,則PC+PD的最小值為()A.4 B.5 C.6 D.78.如圖,在?ABCD中,AC,BD相交于點O,點E是OA的中點,連接BE并延長交AD于點F,已知S△AEF=4,則下列結論:①;②S△BCE=36;③S△ABE=12;④△AEF~△ACD,其中一定正確的是()A.①②③④ B.①④ C.②③④ D.①②③9.通州區(qū)大運河森林公園占地面積10700畝,是北京規(guī)模最大的濱河森林公園,將10700用科學記數(shù)法表示為()A.10.7×104 B.1.07×105 C.1.7×104 D.1.07×10410.如圖,△ABC在邊長為1個單位的方格紙中,它的頂點在小正方形的頂點位置.如果△ABC的面積為10,且sinA=,那么點C的位置可以在()A.點C1處 B.點C2處 C.點C3處 D.點C4處二、填空題(本大題共6個小題,每小題3分,共18分)11.已知二次函數(shù)y=x2,當x>0時,y隨x的增大而_____(填“增大”或“減小”).12.如圖,已知直線與軸、軸相交于、兩點,與的圖象相交于、兩點,連接、.給出下列結論:①;②;③;④不等式的解集是或.其中正確結論的序號是__________.13.如圖,在平面直角坐標系中,點A是拋物線y=a(x+)2+k與y軸的交點,點B是這條拋物線上的另一點,且AB∥x軸,則以AB為邊的正方形ABCD的周長為_____.14.如圖,AB是⊙O的直徑,CD是弦,CD⊥AB于點E,若⊙O的半徑是5,CD=8,則AE=______.15.化簡:=.16.如圖,將邊長為的正方形ABCD繞點A逆時針方向旋轉30°后得到正方形A′B′C′D′,則圖中陰影部分面積為_______平方單位.三、解答題(共8題,共72分)17.(8分)如圖,在△ABC中,∠C=90°,∠CAB=50°,按以下步驟作圖:①以點A為圓心,小于AC長為半徑畫弧,分別交AB、AC于點E、F;②分別以點E、F為圓心,大于EF長為半徑畫弧,兩弧相交于點G;③作射線AG,交BC邊于點D.則∠ADC的度數(shù)為()A.40° B.55° C.65° D.75°18.(8分)某商店銷售兩種品牌的計算器,購買2個A品牌和3個B品牌的計算器共需280元;購買3個A品牌和1個B品牌的計算器共需210元.(Ⅰ)求這兩種品牌計算器的單價;(Ⅱ)開學前,該商店對這兩種計算器開展了促銷活動,具體辦法如下:A品牌計算器按原價的九折銷售,B品牌計算器10個以上超出部分按原價的七折銷售.設購買x個A品牌的計算器需要y1元,購買x個B品牌的計算器需要y2元,分別求出y1,y2關于x的函數(shù)關系式.(Ⅲ)某校準備集體購買同一品牌的計算器,若購買計算器的數(shù)量超過15個,購買哪種品牌的計算器更合算?請說明理由.19.(8分)如圖,某人站在樓頂觀測對面的筆直的旗桿AB,已知觀測點C到旗桿的距離CE=8m,測得旗桿的頂部A的仰角∠ECA=30°,旗桿底部B的俯角∠ECB=45°,求旗桿AB的髙.20.(8分)某校對學生就“食品安全知識”進行了抽樣調查(每人選填一類),繪制了如圖所示的兩幅統(tǒng)計圖(不完整)。請根據(jù)圖中信息,解答下列問題:(1)根據(jù)圖中數(shù)據(jù),求出扇形統(tǒng)計圖中的值,并補全條形統(tǒng)計圖。(2)該校共有學生900人,估計該校學生對“食品安全知識”非常了解的人數(shù).21.(8分)如圖,AB是⊙O的直徑,C是弧AB的中點,弦CD與AB相交于E.若∠AOD=45°,求證:CE=ED;(2)若AE=EO,求tan∠AOD的值.22.(10分)某食品廠生產一種半成品食材,產量百千克與銷售價格元千克滿足函數(shù)關系式,從市場反饋的信息發(fā)現(xiàn),該半成品食材的市場需求量百千克與銷售價格元千克滿足一次函數(shù)關系,如下表:銷售價格元千克2410市場需求量百千克12104已知按物價部門規(guī)定銷售價格x不低于2元千克且不高于10元千克求q與x的函數(shù)關系式;當產量小于或等于市場需求量時,這種半成品食材能全部售出,求此時x的取值范圍;當產量大于市場需求量時,只能售出符合市場需求量的半成品食材,剩余的食材由于保質期短而只能廢棄若該半成品食材的成本是2元千克.求廠家獲得的利潤百元與銷售價格x的函數(shù)關系式;當廠家獲得的利潤百元隨銷售價格x的上漲而增加時,直接寫出x的取值范圍利潤售價成本23.(12分)問題提出(1)如圖1,在△ABC中,∠A=75°,∠C=60°,AC=6,求△ABC的外接圓半徑R的值;問題探究(2)如圖2,在△ABC中,∠BAC=60°,∠C=45°,AC=8,點D為邊BC上的動點,連接AD以AD為直徑作⊙O交邊AB、AC分別于點E、F,接E、F,求EF的最小值;問題解決(3)如圖3,在四邊形ABCD中,∠BAD=90°,∠BCD=30°,AB=AD,BC+CD=12,連接AC,線段AC的長是否存在最小值,若存在,求最小值:若不存在,請說明理由.24.如圖,在△ABC中,點D,E分別在邊AB,AC上,且BE平分∠ABC,∠ABE=∠ACD,BE,CD交于點F.(1)求證:;(2)請?zhí)骄烤€段DE,CE的數(shù)量關系,并說明理由;(3)若CD⊥AB,AD=2,BD=3,求線段EF的長.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】
解:分析題中所給函數(shù)圖像,段,隨的增大而增大,長度與點的運動時間成正比.段,逐漸減小,到達最小值時又逐漸增大,排除、選項,段,逐漸減小直至為,排除選項.故選.【點睛】本題考查了動點問題的函數(shù)圖象,函數(shù)圖象是典型的數(shù)形結合,圖象應用信息廣泛,通過看圖獲取信息,不僅可以解決生活中的實際問題,還可以提高分析問題、解決問題的能力.用圖象解決問題時,要理清圖象的含義即會識圖.2、C【解析】
根據(jù)只有符號不同的兩個數(shù)互為相反數(shù)進行解答即可.【詳解】與只有符號不同,所以的相反數(shù)是,故選C.【點睛】本題考查了相反數(shù)的定義,熟練掌握相反數(shù)的定義是解題的關鍵.3、D【解析】
解:∵∴∵EO⊥AB,∴∴故選D.4、A【解析】
∵AB的中垂線交BC于D,AC的中垂線交BC于E,∴DA=DB,EA=EC,則△ADE的周長=AD+DE+AE=BD+DE+EC=BC=8,故選A.5、D【解析】試題解析:用加減法解方程組時,如果消去y,最簡捷的方法是②×2+①,故選D.6、B【解析】
根據(jù)軸對稱圖形與中心對稱圖形的概念判斷即可.【詳解】解:A、是軸對稱圖形,也是中心對稱圖形,故錯誤;B、是中心對稱圖形,不是軸對稱圖形,故正確;C、是軸對稱圖形,也是中心對稱圖形,故錯誤;D、是軸對稱圖形,也是中心對稱圖形,故錯誤.故選B.【點睛】本題考查的是中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.7、B【解析】試題解析:過點C作CO⊥AB于O,延長CO到C′,使OC′=OC,連接DC′,交AB于P,連接CP.此時DP+CP=DP+PC′=DC′的值最小.∵DC=1,BC=4,∴BD=3,連接BC′,由對稱性可知∠C′BE=∠CBE=41°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=41°,∴BC=BC′=4,根據(jù)勾股定理可得DC′===1.故選B.8、D【解析】
∵在?ABCD中,AO=AC,∵點E是OA的中點,∴AE=CE,∵AD∥BC,∴△AFE∽△CBE,∴=,∵AD=BC,∴AF=AD,∴;故①正確;∵S△AEF=4,=()2=,∴S△BCE=36;故②正確;∵=,∴=,∴S△ABE=12,故③正確;∵BF不平行于CD,∴△AEF與△ADC只有一個角相等,∴△AEF與△ACD不一定相似,故④錯誤,故選D.9、D【解析】
科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】解:10700=1.07×104,
故選:D.【點睛】此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.10、D【解析】如圖:∵AB=5,,∴D=4,∵,∴,∴AC=4,∵在RT△AD中,D,AD=8,∴A=,故答案為D.二、填空題(本大題共6個小題,每小題3分,共18分)11、增大.【解析】
根據(jù)二次函數(shù)的增減性可求得答案【詳解】∵二次函數(shù)y=x2的對稱軸是y軸,開口方向向上,∴當y隨x的增大而增大.故答案為:增大.【點睛】本題考查的知識點是二次函數(shù)的性質,解題的關鍵是熟練的掌握二次函數(shù)的性質.12、②③④【解析】分析:根據(jù)一次函數(shù)和反比例函數(shù)的性質得到k1k2>0,故①錯誤;把A(-2,m)、B(1,n)代入y=中得到-2m=n故②正確;把A(-2,m)、B(1,n)代入y=k1x+b得到y(tǒng)=-mx-m,求得P(-1,0),Q(0,-m),根據(jù)三角形的面積公式即可得到S△AOP=S△BOQ;故③正確;根據(jù)圖象得到不等式k1x+b>的解集是x<-2或0<x<1,故④正確.詳解:由圖象知,k1<0,k2<0,∴k1k2>0,故①錯誤;把A(-2,m)、B(1,n)代入y=中得-2m=n,∴m+n=0,故②正確;把A(-2,m)、B(1,n)代入y=k1x+b得,∴,∵-2m=n,∴y=-mx-m,∵已知直線y=k1x+b與x軸、y軸相交于P、Q兩點,∴P(-1,0),Q(0,-m),∴OP=1,OQ=m,∴S△AOP=m,S△BOQ=m,∴S△AOP=S△BOQ;故③正確;由圖象知不等式k1x+b>的解集是x<-2或0<x<1,故④正確;故答案為:②③④.點睛:本題考查了反比例函數(shù)與一次函數(shù)的交點,求兩直線的交點坐標,三角形面積的計算,正確的理解題意是解題的關鍵.13、1【解析】
根據(jù)題意和二次函數(shù)的性質可以求得線段AB的長度,從而可以求得正方形ABCD的周長.【詳解】∵在平面直角坐標系中,點A是拋物線y=a(x+)2+k與y軸的交點,∴點A的橫坐標是0,該拋物線的對稱軸為直線x=﹣,∵點B是這條拋物線上的另一點,且AB∥x軸,∴點B的橫坐標是﹣3,∴AB=|0﹣(﹣3)|=3,∴正方形ABCD的周長為:3×4=1,故答案為:1.【點睛】本題考查了二次函數(shù)圖象上點的坐標特征、正方形的性質,解題的關鍵是找出所求問題需要的條件.14、2【解析】
連接OC,由垂徑定理知,點E是CD的中點,在直角△OCE中,利用勾股定理即可得到關于半徑的方程,求得圓半徑即可【詳解】設AE為x,連接OC,∵AB是⊙O的直徑,弦CD⊥AB于點E,CD=8,∴∠CEO=90°,CE=DE=4,由勾股定理得:OC2=CE2+OE2,52=42+(5-x)2,解得:x=2,則AE是2,故答案為:2【點睛】此題考查垂徑定理和勾股定理,,解題的關鍵是利用勾股定理求關于半徑的方程.15、2【解析】
根據(jù)算術平方根的定義,求數(shù)a的算術平方根,也就是求一個正數(shù)x,使得x2=a,則x就是a的算術平方根,特別地,規(guī)定0的算術平方根是0.【詳解】∵22=4,∴=2.【點睛】本題考查求算術平方根,熟記定義是關鍵.16、6﹣2【解析】
由旋轉角∠BAB′=30°,可知∠DAB′=90°﹣30°=60°;設B′C′和CD的交點是O,連接OA,構造全等三角形,用S陰影部分=S正方形﹣S四邊形AB′OD,計算面積即可.【詳解】解:設B′C′和CD的交點是O,連接OA,∵AD=AB′,AO=AO,∠D=∠B′=90°,∴Rt△ADO≌Rt△AB′O,∴∠OAD=∠OAB′=30°,∴OD=OB′=,S四邊形AB′OD=2S△AOD=2××=2,∴S陰影部分=S正方形﹣S四邊形AB′OD=6﹣2.【點睛】此題的重點是能夠計算出四邊形的面積.注意發(fā)現(xiàn)全等三角形.三、解答題(共8題,共72分)17、C.【解析】試題分析:由作圖方法可得AG是∠CAB的角平分線,∵∠CAB=50°,∴∠CAD=∠CAB=25°,∵∠C=90°,∴∠CDA=90°﹣25°=65°,故選C.考點:作圖—基本作圖.18、(1)A種品牌計算器50元/個,B種品牌計算器60元/個;(2)y1=45x,y2=;(3)詳見解析.【解析】
(1)根據(jù)題意列出二元一次方程組并求解即可;(2)按照“購買所需費用=折扣×單價×數(shù)量”列式即可,注意B品牌計算器的采購要分0≤x≤10和x>10兩種情況考慮;(3)根據(jù)上問所求關系式,分別計算當x>15時,由y1=y2、y1>y2、y1<y2確定其分別對應的銷量范圍,從而確定方案.【詳解】(Ⅰ)設A、B兩種品牌的計算器的單價分別為a元、b元,根據(jù)題意得,,解得:,答:A種品牌計算器50元/個,B種品牌計算器60元/個;(Ⅱ)A品牌:y1=50x?0.9=45x;B品牌:①當0≤x≤10時,y2=60x,②當x>10時,y2=10×60+60×(x﹣10)×0.7=42x+180,綜上所述:y1=45x,y2=;(Ⅲ)當y1=y2時,45x=42x+180,解得x=60,即購買60個計算器時,兩種品牌都一樣;當y1>y2時,45x>42x+180,解得x>60,即購買超過60個計算器時,B品牌更合算;當y1<y2時,45x<42x+180,解得x<60,即購買不足60個計算器時,A品牌更合算,當購買數(shù)量為15時,顯然購買A品牌更劃算.【點睛】本題考查了二元一次方程組的應用.19、(8+8)m.【解析】
利用∠ECA的正切值可求得AE;利用∠ECB的正切值可求得BE,由AB=AE+BE可得答案.【詳解】在Rt△EBC中,有BE=EC×tan45°=8m,在Rt△AEC中,有AE=EC×tan30°=8m,∴AB=8+8(m).【點睛】本題考查了解直角三角形的應用-俯角、仰角問題,要求學生能借助其關系構造直角三角形并解直角三角形.20、(1),補全條形統(tǒng)計圖見解析;(2)該校學生對“食品安全知識”非常了解的人數(shù)為135人?!窘馕觥吭囶}分析:(1)由統(tǒng)計圖中的信息可知,B組學生有32人,占總數(shù)的40%,由此可得被抽查學生總人數(shù)為:32÷40%=80(人),結合C組學生有28人可得:m%=28÷80×100%=35%,由此可得m=35;由80-32-28-8=12(人)可知A組由12人,由此即可補全條形統(tǒng)計圖了;(2)由(1)中計算可知,A組有12名學生,占總數(shù)的12÷80×100%=15%,結合全??側藬?shù)為900可得900×15%=135(人),即全?!胺浅A私狻薄笆称钒踩R”的有135人.試題解析:(1)由已知條件可得:被抽查學生總數(shù)為32÷40%=80(人),∴m%=28÷80×100%=35%,∴m=35,A組人數(shù)為:80-32-28-8=12(人),將圖形統(tǒng)計圖補充完整如下圖所示:(2)由題意可得:900×(12÷80×100%)=900×15%=135(人).答:全校學生對“食品安全知識”非常了解的人數(shù)為135人.21、(1)見解析;(2)tan∠AOD=.【解析】
(1)作DF⊥AB于F,連接OC,則△ODF是等腰直角三角形,得出OC=OD=DF,由垂徑定理得出∠COE=90°,證明△DEF∽△CEO得出,即可得出結論;(2)由題意得OE=OA=OC,同(1)得△DEF∽△CEO,得出,設⊙O的半徑為2a(a>0),則OD=2a,EO=a,設EF=x,則DF=2x,在Rt△ODF中,由勾股定理求出x=a,得出DF=a,OF=EF+EO=a,由三角函數(shù)定義即可得出結果.【詳解】(1)證明:作DF⊥AB于F,連接OC,如圖所示:則∠DFE=90°,∵∠AOD=45°,∴△ODF是等腰直角三角形,∴OC=OD=DF,∵C是弧AB的中點,∴OC⊥AB,∴∠COE=90°,∵∠DEF=∠CEO,∴△DEF∽△CEO,∴,∴CE=ED;(2)如圖所示:∵AE=EO,∴OE=OA=OC,同(1)得:,△DEF∽△CEO,∴,設⊙O的半徑為2a(a>0),則OD=2a,EO=a,設EF=x,則DF=2x,在Rt△ODF中,由勾股定理得:(2x)2+(x+a)2=(2a)2,解得:x=a,或x=﹣a(舍去),∴DF=a,OF=EF+EO=a,∴.【點睛】本題考查了等腰直角三角形的判定與性質、相似三角形的判定與性質、勾股定理、垂徑定理、三角函數(shù)等知識,熟練掌握相似三角形的判定與性質、勾股定理是關鍵.22、(1);(2);(3);當時,廠家獲得的利潤y隨銷售價格x的上漲而增加.【解析】
(1)直接利用待定系數(shù)法求出一次函數(shù)解析式進而得出答案;(2)由題意可得:p≤q,進而得出x的取值范圍;(3)①利用頂點式求出函數(shù)最值得出答案;②利用二次函數(shù)的增減性得出答案即可.【詳解】(1)設q=kx+b(k,b為常數(shù)且k≠0),當x=2時,q=12,當x=4時,q=10,代入解析式得:,解得:,∴q與x的函數(shù)關系式為:q=﹣x+14;(2)當產量小于或等于市場需求量時,有p≤q,∴x+8≤﹣x+14,解得:x≤4,又2≤x≤10,∴2≤x≤4;(3)①當產量大于市場需求量時,可得4<x≤10,由題意得:廠家獲得的利潤是:y=qx﹣2p=﹣x2+13x﹣16=﹣(x)2;②∵當x時,y隨x的增加而增加.又∵產量大于市場需求量時,有4<x≤10,∴當4<x時,廠家獲得的利潤y隨銷售價格x的上漲而增加.【點睛】本題考查了待定系數(shù)法求一次函數(shù)解析式以及二次函數(shù)最值求法等知識,正確得出二次函數(shù)解析式是解題的關鍵.23、(1)△ABC的外接圓的R為1;(2)EF的最小值為2;(3)存在,AC的最小值為9.【解析】
(1)如圖1中,作△ABC的外接圓,連接OA,OC.證明∠AOC=90°即可解決問題;(2)如圖2中,作AH⊥BC于H.當直徑AD的值一定時,EF的值也確定,根據(jù)垂線段最短可知當AD與AH重合時,AD的值最短,此時EF的值也最短;(3)如圖3中,將△ADC繞點A順時針旋轉90°得到△ABE,連接EC,作EH⊥CB交CB的延長線于H,設BE=CD=x.證明EC=AC,構建二次函數(shù)求出EC的最小值即可解決問題.【詳解】解:(1)如圖1中,作△ABC的外接圓,連接OA,OC.∵∠B=180°﹣∠BAC﹣∠ACB=180°﹣75°﹣10°=45°,又∵∠AOC=2∠B,∴∠AOC=90°,∴AC=1,∴OA=OC=1,∴△ABC的外接圓的R為1.(2)如圖2中,作AH⊥BC于H.∵AC=8,∠C=45°,∴AH=AC?sin45°=8×=8,∵∠BAC=10°,∴當直徑AD的值一定時,EF的值也確定,根據(jù)垂線段最短可知當AD與AH重合時,AD的值最短,此時EF的值也最短,如圖2﹣1中,當AD⊥BC時,作OH⊥EF于H,連接OE,OF.∵∠EOF=2∠BAC=20°,OE=OF,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 眼鏡盒運輸司機勞務協(xié)議
- 湖北文理學院《建筑裝飾工程施工技術》2023-2024學年第一學期期末試卷
- 2025年度水利工程招標廉政監(jiān)督服務合同3篇
- 2025年度舞蹈教育項目舞蹈教師與臨時工聘用合同3篇
- 清遠2024年廣東清遠陽山縣招聘事業(yè)單位工作人員47人筆試歷年參考題庫附帶答案詳解
- 鉆孔灌注樁冬季施工方案
- 2025年度鋼材市場代理銷售合同2篇
- 山西2025年山西省人民醫(yī)院急需緊缺高層次人才招聘5人筆試歷年參考題庫附帶答案詳解
- 周口2024年河南周口市公安機關招聘輔警458人筆試歷年參考題庫附帶答案詳解
- 2025年影視字幕翻譯制作合同3篇
- 下肢皮牽引護理PPT課件(19頁PPT)
- 臺資企業(yè)A股上市相關資料
- 電 梯 工 程 預 算 書
- 參會嘉賓簽到表
- 機械車間員工績效考核表
- 形式發(fā)票格式2 INVOICE
- 2.48低危胸痛患者后繼治療評估流程圖
- 人力資源管理之績效考核 一、什么是績效 所謂績效簡單的講就是對
- 山東省醫(yī)院目錄
- 云南地方本科高校部分基礎研究
- 廢品管理流程圖
評論
0/150
提交評論