廣西北流市重點名校2024年中考五模數(shù)學試題含解析_第1頁
廣西北流市重點名校2024年中考五模數(shù)學試題含解析_第2頁
廣西北流市重點名校2024年中考五模數(shù)學試題含解析_第3頁
廣西北流市重點名校2024年中考五模數(shù)學試題含解析_第4頁
廣西北流市重點名校2024年中考五模數(shù)學試題含解析_第5頁
已閱讀5頁,還剩19頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

廣西北流市重點名校2024年中考五模數(shù)學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,AD是⊙O的弦,過點O作AD的垂線,垂足為點C,交⊙O于點F,過點A作⊙O的切線,交OF的延長線于點E.若CO=1,AD=2,則圖中陰影部分的面積為A.4-π B.2-πC.4-π D.2-π2.如圖所示,△ABC為等腰直角三角形,∠ACB=90°,AC=BC=2,正方形DEFG邊長也為2,且AC與DE在同一直線上,△ABC從C點與D點重合開始,沿直線DE向右平移,直到點A與點E重合為止,設CD的長為x,△ABC與正方形DEFG重合部分(圖中陰影部分)的面積為y,則y與x之間的函數(shù)關(guān)系的圖象大致是()A. B.C. D.3.如圖,在菱形紙片ABCD中,AB=4,∠A=60°,將菱形紙片翻折,使點A落在CD的中點E處,折痕為FG,點F、G分別在邊AB、AD上.則sin∠AFG的值為()A. B. C. D.4.在正方體的表面上畫有如圖1中所示的粗線,圖2是其展開圖的示意圖,但只在A面上畫有粗線,那么將圖1中剩余兩個面中的粗線畫入圖2中,畫法正確的是()A. B. C. D.5.如果解關(guān)于x的分式方程時出現(xiàn)增根,那么m的值為A.-2 B.2 C.4 D.-46.如圖,已知△ABC中,∠C=90°,AC=BC=,將△ABC繞點A順時針方向旋轉(zhuǎn)60°到△AB′C′的位置,連接C′B,則C′B的長為()A. B. C. D.17.關(guān)于x的一元二次方程x2-4x+k=0有兩個相等的實數(shù)根,則k的值是()A.2 B.-2 C.4 D.-48.如圖,半⊙O的半徑為2,點P是⊙O直徑AB延長線上的一點,PT切⊙O于點T,M是OP的中點,射線TM與半⊙O交于點C.若∠P=20°,則圖中陰影部分的面積為()A.1+ B.1+C.2sin20°+ D.9.下列幾何體是棱錐的是()A. B. C. D.10.如圖,AD,CE分別是△ABC的中線和角平分線.若AB=AC,∠CAD=20°,則∠ACE的度數(shù)是()A.20° B.35° C.40° D.70°11.小明和他的爸爸媽媽共3人站成一排拍照,他的爸爸媽媽相鄰的概率是()A. B. C. D.12.關(guān)于2、6、1、10、6的這組數(shù)據(jù),下列說法正確的是()A.這組數(shù)據(jù)的眾數(shù)是6 B.這組數(shù)據(jù)的中位數(shù)是1C.這組數(shù)據(jù)的平均數(shù)是6 D.這組數(shù)據(jù)的方差是10二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,AC是正五邊形ABCDE的一條對角線,則∠ACB=_____.14.小青在八年級上學期的數(shù)學成績?nèi)缦卤硭荆綍r測驗期中考試期末考試成績869081如果學期總評成績根據(jù)如圖所示的權(quán)重計算,小青該學期的總評成績是_____分.15.已知點A,B的坐標分別為(﹣2,3)、(1,﹣2),將線段AB平移,得到線段A′B′,其中點A與點A′對應,點B與點B′對應,若點A′的坐標為(2,﹣3),則點B′的坐標為________.16.如圖,直線y=x+2與反比例函數(shù)y=的圖象在第一象限交于點P.若OP=,則k的值為________.17.函數(shù)中自變量x的取值范圍是___________.18.如圖,菱形的邊,,是上一點,,是邊上一動點,將梯形沿直線折疊,的對應點為,當?shù)拈L度最小時,的長為__________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)已知二次函數(shù)的圖象如圖6所示,它與軸的一個交點坐標為,與軸的交點坐標為(0,3).求出此二次函數(shù)的解析式;根據(jù)圖象,寫出函數(shù)值為正數(shù)時,自變量的取值范圍.20.(6分)灞橋區(qū)教育局為了了解七年級學生參加社會實踐活動情況,隨機抽取了鐵一中濱河學部分七年級學生2016﹣2017學年第一學期參加實踐活動的天數(shù),并用得到的數(shù)據(jù)繪制了兩幅統(tǒng)計圖,下面給出了兩幅不完整的統(tǒng)計圖.請根據(jù)圖中提供的信息,回答下列問題:a=%,并補全條形圖.在本次抽樣調(diào)查中,眾數(shù)和中位數(shù)分別是多少?如果該區(qū)共有七年級學生約9000人,請你估計活動時間不少于6天的學生人數(shù)大約有多少?21.(6分)如圖,在平面直角坐標系中,已知△AOB是等邊三角形,點A的坐標是(0,4),點B在一象限,點P(t,0)是x軸上的一個動點,連接AP,并把△AOP繞著點A按逆時針方向旋轉(zhuǎn),使邊AO與AB重合,連接OD,PD,得△OPD。(1)當t=時,求DP的長(2)在點P運動過程中,依照條件所形成的△OPD面積為S①當t>0時,求S與t之間的函數(shù)關(guān)系式②當t≤0時,要使s=,請直接寫出所有符合條件的點P的坐標.22.(8分)解方程:.23.(8分)如圖,已知矩形OABC的頂點A、C分別在x軸的正半軸上與y軸的負半軸上,二次函數(shù)的圖像經(jīng)過點B和點C.(1)求點A的坐標;(2)結(jié)合函數(shù)的圖象,求當y<0時,x的取值范圍.24.(10分)某生姜種植基地計劃種植A,B兩種生姜30畝.已知A,B兩種生姜的年產(chǎn)量分別為2000千克/畝、2500千克/畝,收購單價分別是8元/千克、7元/千克.(1)若該基地收獲兩種生姜的年總產(chǎn)量為68000千克,求A,B兩種生姜各種多少畝?(2)若要求種植A種生姜的畝數(shù)不少于B種的一半,那么種植A,B兩種生姜各多少畝時,全部收購該基地生姜的年總收入最多?最多是多少元?25.(10分)如圖,在平面直角坐標系中,直線y1=2x+b與坐標軸交于A、B兩點,與雙曲線(x>0)交于點C,過點C作CD⊥x軸,垂足為D,且OA=AD,點B的坐標為(0,﹣2).(1)求直線y1=2x+b及雙曲線(x>0)的表達式;(2)當x>0時,直接寫出不等式的解集;(3)直線x=3交直線y1=2x+b于點E,交雙曲線(x>0)于點F,求△CEF的面積.26.(12分)某市扶貧辦在精準扶貧工作中,組織30輛汽車裝運花椒、核桃、甘藍向外地銷售.按計劃30輛車都要裝運,每輛汽車只能裝運同一種產(chǎn)品,且必須裝滿,根據(jù)下表提供的信息,解答以下問題:產(chǎn)品名稱核桃花椒甘藍每輛汽車運載量(噸)1064每噸土特產(chǎn)利潤(萬元)0.70.80.5若裝運核桃的汽車為x輛,裝運甘藍的車輛數(shù)是裝運核桃車輛數(shù)的2倍多1,假設30輛車裝運的三種產(chǎn)品的總利潤為y萬元.求y與x之間的函數(shù)關(guān)系式;若裝花椒的汽車不超過8輛,求總利潤最大時,裝運各種產(chǎn)品的車輛數(shù)及總利潤最大值.27.(12分)某中學課外興趣活動小組準備圍建一個矩形苗圃園,其中一邊靠墻,另外三邊周長為30米的籬笆圍成.已知墻長為18米(如圖所示),設這個苗圃園垂直于墻的一邊長為米.若苗圃園的面積為72平方米,求;若平行于墻的一邊長不小于8米,這個苗圃園的面積有最大值和最小值嗎?如果有,求出最大值和最小值;如果沒有,請說明理由;

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】

由S陰影=S△OAE-S扇形OAF,分別求出S△OAE、S扇形OAF即可;【詳解】連接OA,OD

∵OF⊥AD,

∴AC=CD=,

在Rt△OAC中,由tan∠AOC=知,∠AOC=60°,

則∠DOA=120°,OA=2,

∴Rt△OAE中,∠AOE=60°,OA=2

∴AE=2,S陰影=S△OAE-S扇形OAF=×2×2-.故選B.【點睛】考查了切線的判定和性質(zhì);能夠通過作輔助線將所求的角轉(zhuǎn)移到相應的直角三角形中,是解答此題的關(guān)鍵要證某線是圓的切線,對于切線的判定:已知此線過圓上某點,連接圓心與這點(即為半徑),再證垂直即可.2、A【解析】

此題可分為兩段求解,即C從D點運動到E點和A從D點運動到E點,列出面積隨動點變化的函數(shù)關(guān)系式即可.【詳解】解:設CD的長為與正方形DEFG重合部分圖中陰影部分的面積為當C從D點運動到E點時,即時,.當A從D點運動到E點時,即時,,與x之間的函數(shù)關(guān)系由函數(shù)關(guān)系式可看出A中的函數(shù)圖象與所求的分段函數(shù)對應.故選A.【點睛】本題考查的動點變化過程中面積的變化關(guān)系,重點是列出函數(shù)關(guān)系式,但需注意自變量的取值范圍.3、B【解析】

如圖:過點E作HE⊥AD于點H,連接AE交GF于點N,連接BD,BE.由題意可得:DE=1,∠HDE=60°,△BCD是等邊三角形,即可求DH的長,HE的長,AE的長,

NE的長,EF的長,則可求sin∠AFG的值.【詳解】解:如圖:過點E作HE⊥AD于點H,連接AE交GF于點N,連接BD,BE.

∵四邊形ABCD是菱形,AB=4,∠DAB=60°,

∴AB=BC=CD=AD=4,∠DAB=∠DCB=60°,DC∥AB

∴∠HDE=∠DAB=60°,

∵點E是CD中點

∴DE=CD=1

在Rt△DEH中,DE=1,∠HDE=60°

∴DH=1,HE=

∴AH=AD+DH=5

在Rt△AHE中,AE==1

∴AN=NE=,AE⊥GF,AF=EF

∵CD=BC,∠DCB=60°

∴△BCD是等邊三角形,且E是CD中點

∴BE⊥CD,

∵BC=4,EC=1

∴BE=1

∵CD∥AB

∴∠ABE=∠BEC=90°

在Rt△BEF中,EF1=BE1+BF1=11+(AB-EF)1.

∴EF=由折疊性質(zhì)可得∠AFG=∠EFG,

∴sin∠EFG=sin∠AFG=,故選B.【點睛】本題考查了折疊問題,菱形的性質(zhì),勾股定理,添加恰當?shù)妮o助線構(gòu)造直角三角形,利用勾股定理求線段長度是本題的關(guān)鍵.4、A【解析】

解:可把A、B、C、D選項折疊,能夠復原(1)圖的只有A.故選A.5、D【解析】

,去分母,方程兩邊同時乘以(x﹣1),得:m+1x=x﹣1,由分母可知,分式方程的增根可能是1.當x=1時,m+4=1﹣1,m=﹣4,故選D.6、C【解析】

延長BC′交AB′于D,根據(jù)等邊三角形的性質(zhì)可得BD⊥AB′,利用勾股定理列式求出AB,然后根據(jù)等邊三角形的性質(zhì)和等腰直角三角形的性質(zhì)求出BD、C′D,然后根據(jù)BC′=BD-C′D計算即可得解.【詳解】解:延長BC′交AB′于D,連接BB',如圖,在Rt△AC′B′中,AB′=AC′=2,∵BC′垂直平分AB′,∴C′D=AB=1,∵BD為等邊三角形△ABB′的高,∴BD=AB′=,∴BC′=BD-C′D=-1.故本題選擇C.【點睛】熟練掌握勾股定理以及由旋轉(zhuǎn)60°得到△ABB′是等邊三角形是解本題的關(guān)鍵.7、C【解析】

對于一元二次方程a+bx+c=0,當Δ=-4ac=0時,方程有兩個相等的實數(shù)根.即16-4k=0,解得:k=4.考點:一元二次方程根的判別式8、A【解析】

連接OT、OC,可求得∠COM=30°,作CH⊥AP,垂足為H,則CH=1,于是,S陰影=S△AOC+S扇形OCB,代入可得結(jié)論.【詳解】連接OT、OC,∵PT切⊙O于點T,∴∠OTP=90°,∵∠P=20°,∴∠POT=70°,∵M是OP的中點,∴TM=OM=PM,∴∠MTO=∠POT=70°,∵OT=OC,∴∠MTO=∠OCT=70°,∴∠OCT=180°-2×70°=40°,∴∠COM=30°,作CH⊥AP,垂足為H,則CH=OC=1,S陰影=S△AOC+S扇形OCB=OA?CH+=1+,故選A.【點睛】本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過切點的半徑.運用切線的性質(zhì)來進行計算或論證,常通過作輔助線連接圓心和切點,利用垂直構(gòu)造直角三角形解決有關(guān)問題.也考查了等腰三角形的判定與性質(zhì)和含30度的直角三角形三邊的關(guān)系.9、D【解析】分析:根據(jù)棱錐的概念判斷即可.A是三棱柱,錯誤;B是圓柱,錯誤;C是圓錐,錯誤;D是四棱錐,正確.故選D.點睛:本題考查了立體圖形的識別,關(guān)鍵是根據(jù)棱錐的概念判斷.10、B【解析】

先根據(jù)等腰三角形的性質(zhì)以及三角形內(nèi)角和定理求出∠CAB=2∠CAD=40°,∠B=∠ACB=(180°-∠CAB)=70°.再利用角平分線定義即可得出∠ACE=∠ACB=35°.【詳解】∵AD是△ABC的中線,AB=AC,∠CAD=20°,∴∠CAB=2∠CAD=40°,∠B=∠ACB=(180°-∠CAB)=70°.∵CE是△ABC的角平分線,∴∠ACE=∠ACB=35°.故選B.【點睛】本題考查了等腰三角形的兩個底角相等的性質(zhì),等腰三角形的頂角平分線、底邊上的中線、底邊上的高相互重合的性質(zhì),三角形內(nèi)角和定理以及角平分線定義,求出∠ACB=70°是解題的關(guān)鍵.11、D【解析】試題解析:設小明為A,爸爸為B,媽媽為C,則所有的可能性是:(ABC),(ACB),(BAC),(BCA),(CAB),(CBA),∴他的爸爸媽媽相鄰的概率是:,故選D.12、A【解析】

根據(jù)方差、算術(shù)平均數(shù)、中位數(shù)、眾數(shù)的概念進行分析.【詳解】數(shù)據(jù)由小到大排列為1,2,6,6,10,它的平均數(shù)為(1+2+6+6+10)=5,數(shù)據(jù)的中位數(shù)為6,眾數(shù)為6,數(shù)據(jù)的方差=[(1﹣5)2+(2﹣5)2+(6﹣5)2+(6﹣5)2+(10﹣5)2]=10.1.故選A.考點:方差;算術(shù)平均數(shù);中位數(shù);眾數(shù).二、填空題:(本大題共6個小題,每小題4分,共24分.)13、36°【解析】

由正五邊形的性質(zhì)得出∠B=108°,AB=CB,由等腰三角形的性質(zhì)和三角形內(nèi)角和定理即可得出結(jié)果.【詳解】∵五邊形ABCDE是正五邊形,∴∠B=108°,AB=CB,∴∠ACB=(180°﹣108°)÷2=36°;故答案為36°.14、84.2【解析】小青該學期的總評成績?yōu)?86×10%+90×30%+81×60%=84.2(分),故答案為:84.2.15、(5,﹣8)【解析】

各對應點之間的關(guān)系是橫坐標加4,縱坐標減6,那么讓點B的橫坐標加4,縱坐標減6即為點B′的坐標.【詳解】由A(-2,3)的對應點A′的坐標為(2,-13),坐標的變化規(guī)律可知:各對應點之間的關(guān)系是橫坐標加4,縱坐標減6,∴點B′的橫坐標為1+4=5;縱坐標為-2-6=-8;即所求點B′的坐標為(5,-8).故答案為(5,-8)【點睛】此題主要考查了坐標與圖形的變化-平移,解決本題的關(guān)鍵是根據(jù)已知對應點找到各對應點之間的變化規(guī)律.16、1【解析】設點P(m,m+2),∵OP=,∴=,解得m1=1,m2=﹣1(不合題意舍去),∴點P(1,1),∴1=,解得k=1.點睛:本題考查了反比例函數(shù)與一次函數(shù)的交點坐標,仔細審題,能夠求得點P的坐標是解題的關(guān)鍵.17、x≤2【解析】試題解析:根據(jù)題意得:解得:.18、【解析】如圖所示,過點作,交于點.在菱形中,∵,且,所以為等邊三角形,.根據(jù)“等腰三角形三線合一”可得,因為,所以.在中,根據(jù)勾股定理可得,.因為梯形沿直線折疊,點的對應點為,根據(jù)翻折的性質(zhì)可得,點在以點為圓心,為半徑的弧上,則點在上時,的長度最小,此時,因為.所以,所以,所以.點睛:A′為四邊形ADQP沿PQ翻折得到,由題目中可知AP長為定值,即A′點在以P為圓心、AP為半徑的圓上,當C、A′、P在同一條直線時CA′取最值,由此結(jié)合直角三角形勾股定理、等邊三角形性質(zhì)求得此時CQ的長度即可.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1);(2).【解析】

(1)將(-1,0)和(0,3)兩點代入二次函數(shù)y=-x2+bx+c,求得b和c;從而得出拋物線的解析式;

(2)令y=0,解得x1,x2,得出此二次函數(shù)的圖象與x軸的另一個交點的坐標,進而求出當函數(shù)值y>0時,自變量x的取值范圍.【詳解】解:(1)由二次函數(shù)的圖象經(jīng)過和兩點,得,解這個方程組,得,拋物線的解析式為,(2)令,得.解這個方程,得,.∴此二次函數(shù)的圖象與軸的另一個交點的坐標為.當時,.【點睛】本題考查的知識點是二次函數(shù)的三種形式及待定系數(shù)法求二次函數(shù)解析式及拋物線與坐標軸的交點,解題的關(guān)鍵是熟練的掌握二次函數(shù)的三種形式及待定系數(shù)法求二次函數(shù)解析式及拋物線與坐標軸的交點.20、(1)10,補圖見解析;(2)眾數(shù)是5,中位數(shù)是1;(3)活動時間不少于1天的學生人數(shù)大約有5400人.【解析】

(1)用1減去其他天數(shù)所占的百分比即可得到a的值,用310°乘以它所占的百分比,即可求出該扇形所對圓心角的度數(shù);根據(jù)1天的人數(shù)和所占的百分比求出總?cè)藬?shù),再乘以8天的人數(shù)所占的百分比,即可補全統(tǒng)計圖;(2)根據(jù)眾數(shù)和中位數(shù)的定義即可求出答案;(3)用總?cè)藬?shù)乘以活動時間不少于1天的人數(shù)所占的百分比即可求出答案.【詳解】解:(1)扇形統(tǒng)計圖中a=1﹣5%﹣40%﹣20%﹣25%=10%,該扇形所對圓心角的度數(shù)為310°×10%=31°,參加社會實踐活動的天數(shù)為8天的人數(shù)是:×10%=10(人),補圖如下:故答案為10;(2)抽樣調(diào)查中總?cè)藬?shù)為100人,結(jié)合條形統(tǒng)計圖可得:眾數(shù)是5,中位數(shù)是1.(3)根據(jù)題意得:9000×(25%+10%+5%+20%)=5400(人),活動時間不少于1天的學生人數(shù)大約有5400人.【點睛】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大小.21、(1)DP=;(2)①;②.【解析】

(1)先判斷出△ADP是等邊三角形,進而得出DP=AP,即可得出結(jié)論;

(2)①先求出GH=2,進而求出DG,再得出DH,即可得出結(jié)論;

②分兩種情況,利用三角形的面積建立方程求解即可得出結(jié)論.【詳解】解:(1)∵A(0,4),

∴OA=4,

∵P(t,0),

∴OP=t,

∵△ABD是由△AOP旋轉(zhuǎn)得到,

∴△ABD≌△AOP,

∴AP=AD,∠DAB=∠PAO,

∴∠DAP=∠BAO=60°,

∴△ADP是等邊三角形,

∴DP=AP,

∵,

∴,

∴;(2)①當t>0時,如圖1,BD=OP=t,

過點B,D分別作x軸的垂線,垂足于F,H,過點B作x軸的平行線,分別交y軸于點E,交DH于點G,

∵△OAB為等邊三角形,BE⊥y軸,

∴∠ABP=30°,AP=OP=2,

∵∠ABD=90°,

∴∠DBG=60°,

∴DG=BD?sin60°=,

∵GH=OE=2,

∴,

∴;②當t≤0時,分兩種情況:

∵點D在x軸上時,如圖2在Rt△ABD中,,

(1)當時,如圖3,BD=OP=-t,,∴,

∴,

∴或,

∴或,

(2)當時,如圖4,BD=OP=-t,,

∴,

∴∴或(舍)∴.【點睛】此題是幾何變換綜合題,主要考查了全等三角形的判定和性質(zhì),旋轉(zhuǎn)的性質(zhì),三角形的面積公式以及解直角三角形,正確作出輔助線是解決本題的關(guān)鍵.22、【解析】分析:此題應先將原分式方程兩邊同時乘以最簡公分母,則原分式方程可化為整式方程,解出即可.詳解:去分母,得.去括號,得.移項,得.合并同類項,得.系數(shù)化為1,得.經(jīng)檢驗,原方程的解為.點睛:本題主要考查分式方程的解法.注意:解分式方程必須檢驗.23、(1);(2)【解析】

(1)當時,求出點C的坐標,根據(jù)四邊形為矩形,得出點B的坐標,進而求出點A即可;(2)先求出拋物線圖象與x軸的兩個交點,結(jié)合圖象即可得出.【詳解】解:(1)當時,函數(shù)的值為-2,∴點的坐標為∵四邊形為矩形,解方程,得.∴點的坐標為.∴點的坐標為.(2)解方程,得.由圖象可知,當時,的取值范圍是.【點睛】本題考查了二次函數(shù)與幾何問題,以及二次函數(shù)與不等式問題,解題的關(guān)鍵是靈活運用幾何知識,并熟悉二次函數(shù)的圖象與性質(zhì).24、(1)種植A種生姜14畝,種植B種生姜16畝;(2)種植A種生姜10畝,種植B種生姜20畝時,全部收購該基地生姜的年總收入最多,最多為510000元.【解析】試題分析:(1)設該基地種植A種生姜x畝,那么種植B種生姜(30-x)畝,根據(jù):A種生姜的產(chǎn)量+B種生姜的產(chǎn)量=總產(chǎn)量,列方程求解;(2)設A種生姜x畝,根據(jù)A種生姜的畝數(shù)不少于B種的一半,列不等式求x的取值范圍,再根據(jù)(1)的等量關(guān)系列出函數(shù)關(guān)系式,在x的取值范圍內(nèi)求總產(chǎn)量的最大值.試題解析:(1)設該基地種植A種生姜x畝,那么種植B種生姜(30-x)畝,根據(jù)題意,2000x+2500(30-x)=68000,解得x=14,∴30-x=16,答:種植A種生姜14畝,種植B種生姜16畝;(2)由題意得,x≥12設全部收購該基地生姜的年總收入為y元,則y=8×2000x+7×2500(30-x)=-1500x+525000,∵y隨x的增大而減小,∴當x=10時,y有最大值,此時,30-x=20,y的最大值為510000元,答:種植A種生姜10畝,種植B種生姜20畝時,全部收購該基地生姜的年總收入最多,最多為510000元.【點睛】本題考查了一次函數(shù)的應用.關(guān)鍵是根據(jù)總產(chǎn)量=A種生姜的產(chǎn)量+B種生姜的產(chǎn)量,列方程或函數(shù)關(guān)系式.25、(1)直線解析式為y1=2x﹣2,雙曲線的表達式為y2=(x>0);(2)0<x<2;(3)【解析】

(1)將點B的代入直線y1=2x+b,可得b,則可以求得直線解析式;令y=0可得A點坐標為(1,0),又因為OA=AD,則D點坐標為(2,0),把x=2代入直線解析式,可得y=2,從而得到點C的坐標為(2,2),在把(2,2)代入雙曲線y2=,可得k=4,則雙曲線的表達式為y2=(x>0).(2)由x的取值范圍,結(jié)合圖像可求得答案.(3)把x=3代入y2函數(shù),可得y=;把x=3代入y1函數(shù),可得y=4,從而得到EF,由三角形的面積公式可得S△CEF=.【詳解】解:(1)將點B的坐標(0,﹣2)代入直線y1=2x+b,可得﹣2=b,∴直線解析式為y1=2x﹣2,令y=0,則x=1,∴A(1,0),∵OA=AD,∴D(2,0),把x=2代入y1=2x﹣2,可得y=2,∴點C的坐標為(2,2),把(2,2)代入雙曲線y2=,可得k=2×2=4,∴雙曲線的表達式為y2=(x>0);(2)當x>0時,不等式>2x+b的解集為0<x<2;(3)把x=3代入y2=,可得y=;把x=3代入

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論