版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
專題32平面向量的概念及線性運算一、【知識梳理】【考綱要求】1.了解向量的實際背景.2.理解平面向量的概念,理解兩個向量相等的含義.3.理解向量的幾何表示.4.掌握向量加法、減法的運算,并理解其幾何意義.5.掌握向量數(shù)乘的運算及其幾何意義,理解兩個向量共線的含義.6.了解向量線性運算的性質(zhì)及其幾何意義.【考點預測】1.向量的有關概念(1)向量:既有大小又有方向的量叫做向量,用有向線段表示,此時有向線段的方向就是向量的方向.向量eq\o(AB,\s\up6(→))的大小就是向量的長度(或稱模),記作|eq\o(AB,\s\up6(→))|.(2)零向量:長度為0的向量,記作0.(3)單位向量:長度等于1個單位長度的向量.(4)平行向量(共線向量):方向相同或相反的非零向量.向量a,b平行,記作a∥b.規(guī)定:0與任一向量平行.(5)相等向量:長度相等且方向相同的向量.(6)相反向量:長度相等且方向相反的向量.2.向量的線性運算向量運算定義法則(或幾何意義)運算律加法求兩個向量和的運算三角形法則平行四邊形法則(1)交換律:a+b=b+a.(2)結合律:(a+b)+c=a+(b+c)減法求兩個向量差的運算a-b=a+(-b)數(shù)乘規(guī)定實數(shù)λ與向量a的積是一個向量,這種運算叫做向量的數(shù)乘,記作λa(1)|λa|=|λ||a|;(2)當λ>0時,λa的方向與a的方向相同;當λ<0時,λa的方向與a的方向相反;當λ=0時,λa=0λ(μa)=λμa;(λ+μ)a=λa+μa;λ(a+b)=λa+λb3.共線向量定理向量a(a≠0)與b共線的充要條件是:存在唯一一個實數(shù)λ,使b=λa.【常用結論】1.中點公式的向量形式:若P為線段AB的中點,O為平面內(nèi)任一點,則eq\o(OP,\s\up6(→))=eq\f(1,2)(eq\o(OA,\s\up6(→))+eq\o(OB,\s\up6(→))).2.eq\o(OA,\s\up6(→))=λeq\o(OB,\s\up6(→))+μeq\o(OC,\s\up6(→))(λ,μ為實數(shù)),若點A,B,C共線,則λ+μ=1.3.解決向量的概念問題要注意兩點:一是不僅要考慮向量的大小,更重要的是考慮向量的方向;二是要特別注意零向量的特殊性,考慮零向量是否也滿足條件.【方法技巧】1.平行向量有關概念的四個關注點(1)相等向量具有傳遞性,非零向量的平行也具有傳遞性.(2)共線向量即為平行向量,它們均與起點無關.(3)向量可以平移,平移后的向量與原向量是相等向量,解題時,不要把它與函數(shù)圖象的平移混淆.(4)非零向量a與eq\f(a,|a|)的關系:eq\f(a,|a|)是與a同方向的單位向量.2.(1)解決平面向量線性運算問題的關鍵在于熟練地找出圖形中的相等向量,并能熟練運用相反向量將加減法相互轉(zhuǎn)化.(2)在求向量時要盡可能轉(zhuǎn)化到平行四邊形或三角形中,運用平行四邊形法則、三角形法則及三角形中位線定理、相似三角形對應邊成比例等平面幾何的性質(zhì),把未知向量轉(zhuǎn)化為用已知向量線性表示.3.與向量的線性運算有關的參數(shù)問題,一般是構造三角形,利用向量運算的三角形法則進行加法或減法運算,然后通過建立方程組即可求得相關參數(shù)的值.4.利用共線向量定理解題的策略(1)a∥b?a=λb(b≠0)是判斷兩個向量共線的主要依據(jù).注意待定系數(shù)法和方程思想的運用.(2)當兩向量共線且有公共點時,才能得出三點共線,即A,B,C三點共線?eq\o(AB,\s\up6(→)),eq\o(AC,\s\up6(→))共線.(3)若a與b不共線且λa=μb,則λ=μ=0.(4)eq\o(OA,\s\up6(→))=λeq\o(OB,\s\up6(→))+μeq\o(OC,\s\up6(→))(λ,μ為實數(shù)),若A,B,C三點共線,則λ+μ=1.二、【題型歸類】【題型一】向量的基本概念【典例1】(多選)給出下列命題,不正確的有()A.若兩個向量相等,則它們的起點相同,終點相同B.若A,B,C,D是不共線的四點,且eq\o(AB,\s\up6(→))=eq\o(DC,\s\up6(→)),則四邊形ABCD為平行四邊形C.a(chǎn)=b的充要條件是|a|=|b|且a∥bD.已知λ,μ為實數(shù),若λa=μb,則a與b共線【典例2】(多選)下列命題正確的是()A.零向量是唯一沒有方向的向量B.零向量的長度等于0C.若a,b都為非零向量,則使eq\f(a,|a|)+eq\f(b,|b|)=0成立的條件是a與b反向共線D.若a=b,b=c,則a=c【典例3】對于非零向量a,b,“a+b=0”是“a∥b”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件【題型二】平面向量的線性運算【典例1】設非零向量a,b滿足|a+b|=|a-b|,則()A.a(chǎn)⊥b B.|a|=|b|C.a(chǎn)∥b D.|a|>|b|【典例2】在△ABC中,eq\o(BD,\s\up6(→))=eq\f(1,3)eq\o(BC,\s\up6(→)),若eq\o(AB,\s\up6(→))=a,eq\o(AC,\s\up6(→))=b,則eq\o(AD,\s\up6(→))等于()A.eq\f(2,3)a+eq\f(1,3)b B.eq\f(1,3)a+eq\f(2,3)bC.eq\f(1,3)a-eq\f(2,3)b D.eq\f(2,3)a-eq\f(1,3)b【典例3】在等腰梯形ABCD中,eq\o(AB,\s\up6(→))=2eq\o(DC,\s\up6(→)),點E是線段eq\o(BC,\s\up6(→))的中點,若eq\o(AE,\s\up6(→))=λeq\o(AB,\s\up6(→))+μeq\o(AD,\s\up6(→)),則λ+μ=________.【題型三】平面向量共線定理的應用【典例1】設兩個非零向量a與b不共線.(1)若eq\o(AB,\s\up6(→))=a+b,eq\o(BC,\s\up6(→))=2a+8b,eq\o(CD,\s\up6(→))=3(a-b),求證:A,B,D三點共線;(2)試確定實數(shù)k,使ka+b和a+kb共線.【典例2】已知向量a與b不共線,eq\o(AB,\s\up6(→))=a+mb,eq\o(AC,\s\up6(→))=na+b(m,n∈R),則eq\o(AB,\s\up6(→))與eq\o(AC,\s\up6(→))共線的條件是()A.m+n=0 B.m-n=0C.mn+1=0 D.mn-1=0【典例3】已知P是△ABC所在平面內(nèi)的一點,若eq\o(CB,\s\up6(→))=λeq\o(PA,\s\up6(→))+eq\o(PB,\s\up6(→)),其中λ∈R,則點P一定在()A.△ABC的內(nèi)部 B.AC邊所在直線上C.AB邊所在直線上 D.BC邊所在直線上三、【培優(yōu)訓練】【訓練一】莊嚴美麗的國旗和國徽上的五角星是革命和光明的象征.正五角星是一個非常優(yōu)美的幾何圖形,且與黃金分割有著密切的聯(lián)系.在如圖所示的正五角星中,以P,Q,R,S,T為頂點的多邊形為正五邊形,且eq\f(PT,AT)=eq\f(\r(5)-1,2).下列關系中正確的是()A.eq\o(BP,\s\up6(→))-eq\o(TS,\s\up6(→))=eq\f(\r(5)+1,2)eq\o(RS,\s\up6(→)) B.eq\o(CQ,\s\up6(→))+eq\o(TP,\s\up6(→))=eq\f(\r(5)+1,2)eq\o(TS,\s\up6(→))C.eq\o(ES,\s\up6(→))-eq\o(AP,\s\up6(→))=eq\f(\r(5)-1,2)eq\o(BQ,\s\up6(→)) D.eq\o(AT,\s\up6(→))+eq\o(BQ,\s\up6(→))=eq\f(\r(5)-1,2)eq\o(CR,\s\up6(→))【訓練二】若2eq\o(OA,\s\up6(→))+eq\o(OB,\s\up6(→))+3eq\o(OC,\s\up6(→))=0,S△AOC,S△ABC分別表示△AOC,△ABC的面積,則S△AOC∶S△ABC=________.【訓練三】如圖,在△ABC中,eq\o(AN,\s\up6(→))=eq\f(2,3)eq\o(NC,\s\up6(→)),P是BN上一點,若eq\o(AP,\s\up6(→))=teq\o(AB,\s\up6(→))+eq\f(1,3)eq\o(AC,\s\up6(→)),則實數(shù)t的值為________.【訓練四】經(jīng)過△OAB的重心G的直線與OA,OB分別交于點P,Q,設eq\o(OP,\s\up6(→))=meq\o(OA,\s\up6(→)),eq\o(OQ,\s\up6(→))=neq\o(OB,\s\up6(→)),m,n∈R+.(1)證明:eq\f(1,m)+eq\f(1,n)為定值;(2)求m+n的最小值.【訓練五】經(jīng)過△OAB的重心G的直線與OA,OB分別交于點P,Q,設eq\o(OP,\s\up6(→))=meq\o(OA,\s\up6(→)),eq\o(OQ,\s\up6(→))=neq\o(OB,\s\up6(→)),m,n∈R*.(1)證明:eq\f(1,m)+eq\f(1,n)為定值;(2)求m+n的最小值.【訓練六】已知O,A,B是不共線的三點,且eq\o(OP,\s\up6(→))=meq\o(OA,\s\up6(→))+neq\o(OB,\s\up6(→))(m,n∈R).(1)若m+n=1,求證:A,P,B三點共線;(2)若A,P,B三點共線,求證:m+n=1.四、【強化測試】【單選題】1.若a,b為非零向量,則“eq\f(a,|a|)=eq\f(b,|b|)”是“a,b共線”的()A.充要條件B.充分不必要條件C.必要不充分條件D.既不充分也不必要條件2.設a=(eq\o(AB,\s\up6(→))+eq\o(CD,\s\up6(→)))+(eq\o(BC,\s\up6(→))+eq\o(DA,\s\up6(→))),b是一個非零向量,則下列結論不正確的是()A.a(chǎn)∥b B.a(chǎn)+b=aC.a(chǎn)+b=b D.|a+b|=|a|+|b|3.如圖所示,在正六邊形ABCDEF中,eq\o(BA,\s\up6(→))+eq\o(CD,\s\up6(→))+eq\o(EF,\s\up6(→))等于()A.0 B.eq\o(BE,\s\up6(→))C.eq\o(AD,\s\up6(→)) D.eq\o(CF,\s\up6(→))4.已知平面內(nèi)一點P及△ABC,若eq\o(PA,\s\up6(→))+eq\o(PB,\s\up6(→))+eq\o(PC,\s\up6(→))=eq\o(AB,\s\up6(→)),則點P與△ABC的位置關系是()A.點P在線段AB上 B.點P在線段BC上C.點P在線段AC上 D.點P在△ABC外部5.已知O是正方形ABCD的中心.若eq\o(DO,\s\up6(→))=λeq\o(AB,\s\up6(→))+μeq\o(AC,\s\up6(→)),其中λ,μ∈R,則eq\f(λ,μ)=()A.-2 B.-eq\f(1,2)C.-eq\r(2) D.eq\r(2)6.矩形ABCD的對角線相交于點O,E為AO的中點,若eq\o(DE,\s\up6(→))=λeq\o(AB,\s\up6(→))+μeq\o(AD,\s\up6(→))(λ,μ為實數(shù)),則λ2+μ2=()A.eq\f(5,8) B.eq\f(1,4) C.1 D.eq\f(5,16)7.在△ABC中,點M為AC上的點,且eq\o(AM,\s\up6(→))=eq\f(1,2)eq\o(MC,\s\up6(→)),若eq\o(BM,\s\up6(→))=λeq\o(BA,\s\up6(→))+μeq\o(BC,\s\up6(→)),則λ-μ的值是()A.1 B.eq\f(1,2) C.eq\f(1,3) D.eq\f(2,3)8.如圖,在平行四邊形ABCD中,E為BC的中點,F(xiàn)為DE的中點,若eq\o(AF,\s\up6(→))=xeq\o(AB,\s\up6(→))+eq\f(3,4)eq\o(AD,\s\up6(→)),則x等于()A.eq\f(3,4) B.eq\f(2,3)C.eq\f(1,2) D.eq\f(1,4)【多選題】9.下列選項中的式子,結果為零向量的是()A.eq\o(AB,\s\up6(→))+eq\o(BC,\s\up6(→))+eq\o(CA,\s\up6(→))B.eq\o(AB,\s\up6(→))+eq\o(MB,\s\up6(→))+eq\o(BO,\s\up6(→))+eq\o(OM,\s\up6(→))C.eq\o(OA,\s\up6(→))+eq\o(OB,\s\up6(→))+eq\o(BO,\s\up6(→))+eq\o(CO,\s\up6(→))D.eq\o(AB,\s\up6(→))-eq\o(AC,\s\up6(→))+eq\o(BD,\s\up6(→))-eq\o(CD,\s\up6(→))10.(多選)下列說法中正確的是()A.eq\o(AB,\s\up6(→))+eq\o(BA,\s\up6(→))=0B.若|a|=|b|且a∥b,則a=bC.向量a與b不共線,則a與b都是非零向量D.若a∥b,則有且只有一個實數(shù)λ,使得b=λa11.(多選)設點M是△ABC所在平面內(nèi)一點,則下列說法正確的是()A.若eq\o(AM,\s\up6(→))=eq\f(1,2)eq\o(AB,\s\up6(→))+eq\f(1,2)eq\o(AC,\s\up6(→)),則點M是邊BC的中點B.若eq\o(AM,\s\up6(→))=2eq\o(AB,\s\up6(→))-eq\o(AC,\s\up6(→)),則點M在邊BC的延長線上C.若eq\o(AM,\s\up6(→))=-eq\o(BM,\s\up6(→))-eq\o(CM,\s\up6(→)),則點M是△ABC的重心D.若eq\o(AM,\s\up6(→))=xeq\o(AB,\s\up6(→))+yeq\o(AC,\s\up6(→)),且x+y=eq\f(1,2),則△MBC的面積是△ABC面積的eq\f(1,2)12.點P是△ABC所在平面內(nèi)一點,且滿足|eq\o(PB,\s\up6(→))-eq\o(PC,\s\up6(→))|-|eq\o(PB,\s\up6(→))+eq\o(PC,\s\up6(→))-2eq\o(PA,\s\up6(→))|=0,則△ABC不可能是()A.鈍角三角形 B.直角三角形C.等腰三角形 D.等邊三角形【填空題】13.若|eq\o(AB,\s\up6(→))|=|eq\o(AC,\s\up6(→))|=|eq\o(AB,\s\up6(→))-eq\o(AC,\s\up6(→))|=2,則|eq\o(AB,\s\up6(→))+eq\o(AC,\s\up6(→))|=________.14.已知e1,e2為平面內(nèi)兩個不共線的向量,eq\o(MN,\s\up6(→))=2e1-3e2,eq\o(NP,\s\up6(→))=λe1+6e2,若M,N,P三點共線,則λ=________.15.已知?ABCD的對角線AC和BD相交于點O,且eq\o(OA,\s\up6(→))=a,eq\o(OB,\s\up6(→))=b,則eq\o(DC,\s\up6(→))=________,eq\o(BC,\s\up6(→))=________.(用a,b表示)16.在直角梯形ABCD中,∠A=90°,∠B=30°,AB=2eq\r(3),BC=2,點E在線段CD上,若eq\o(AE,\s\up6(→))=eq\o(AD,\s\up6(→))+μeq\o(AB,\s\up6(→)),則μ的取值范圍是________.【解答題】17.在△ABC中,D,E分別為BC,AC邊上的中點,G為BE上一點,且GB=2GE,設eq\o(AB,\s\up6(→))=a,eq\o(AC,\s\up6(→))=b,試用a,b表示eq\o(AD,\s\up6(→)),eq\o(AG,\s\up6(→)).18.已知O,A,B是不共線的三點,且eq\o(OP,\s\
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024版有關運輸合同模板集合
- 二零二五版辦公設備耗材行業(yè)規(guī)范制定與執(zhí)行合同3篇
- 2025年度企業(yè)信息化建設與網(wǎng)絡安全合同3篇
- 2024版智慧城市系統(tǒng)集成合同
- 2025年度集裝箱貨運代理業(yè)務合作伙伴管理協(xié)議3篇
- 2025不銹鋼室內(nèi)門定制及安裝服務合同3篇
- 2025年度出納崗位競聘及考核聘用合同書3篇
- 2025年度汽車零部件生產(chǎn)商質(zhì)量標準執(zhí)行協(xié)議3篇
- 二零二五年度科技公司兼職軟件開發(fā)人員聘用合同3篇
- 二零二五版股權分紅權轉(zhuǎn)讓補充協(xié)議3篇
- 法律訴訟及咨詢服務 投標方案(技術標)
- 一年級科學人教版總結回顧2
- 格式塔心理咨詢理論與實踐
- 精神發(fā)育遲滯的護理查房
- 有效排痰的護理ppt(完整版)
- 魯教版七年級數(shù)學下冊(五四制)全冊完整課件
- 算法向善與個性化推薦發(fā)展研究報告
- 聚合物的流變性詳解演示文稿
- 電氣設備預防性試驗安全技術措施
- 醫(yī)院出入口安檢工作記錄表范本
- 內(nèi)科學教學課件:免疫性血小板減少癥(ITP)
評論
0/150
提交評論