




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
Graph-basedPlanningBrianC.Williams
Sept.25th&30th,200216.412J/6.834JOutlineIntroductionTheGraphPlanPlanningProblemGraphConstructionSolutionExtractionPropertiesTerminationwithFailureGraphPlanGraphplanwasdevelopedin1995byAvrimBlumandMerrickFurst,atCMU.RecentimplementationsbyotherresearchershaveextendedthecapabilityofGraphplantoreasonwithtemporallyextendedactions,metricsandnon-atomicpreconditionsandeffects.Approach:GraphPlanConstructscompactencodingofstatespacefromoperatorsandinitialstate,whichprunesmanyinvalidplans–PlanGraph.Generatesplanbysearchingforaconsistentsubgraphthatachievesthegoals.PropositionInitStateActionTime1PropositionTime1ActionTime2PlangraphsfocustowardsvalidplansPlangraphsexcludemanyplansthatareinfeasible.Plansthatdonotsatisfytheinitialorgoalstate.Planswithoperatorsthatthreateneachother.Plangraphsareconstructedinpolynomialtimeandareofpolynomialinsize.Theplangraphdoesnoteliminateallinfeasibleplans.Plangenerationstillrequiresfocusedsearch.Example:GraphandSolutionnoGarbcleanHquietdinnerpresentcarrydollycookwrapcarrydollycookwrap
cleanHquiet
noGarbcleanHquietdinnerpresent1Prop1Action2Prop2Action3PropOutlineIntroductionTheGraphPlanPlanningProblemGraphConstructionSolutionExtractionPropertiesTerminationwithfailure8GraphPlanPlanningProblemStateAconsistentconjunctionofpropositions(positiveliterals)E.g.,(and(cleanhands)(quiet)(dinner)(present)(noGarbage))Doesn’tcommittothetruthofallpropositionsInitialStateProblemstateattimei=0E.g.,(and(cleanHands)(quiet))GoalStateApartialstate,representedbyaconjunctionofliterals.E.g.,(and(noGarbage)(dinner)(present))Theplannermustputthesysteminafinalstatethatsatisfiestheconjunction.9GraphPlanPlanningProblemActionsE.g.,(:operatorcarry
:precondition
:effect(:and(noGarbage)(not(cleanHands)))Preconditions:propositionsthatmustbetruetoapplyoperator.Aconjunctionofpropositions(nonegatedpropositions).Effects:Propositionsthatoperatorchanges,givenpreconditions.Aconjunctionofpropositions(adds)andtheirnegation(deletes).carrynoGarb
cleanHParameterizedschemasandobjectsareusedtocompactlyencodeactions.AddEdgeDeleteEdge10GraphPlanPlanningProblem(:operatorcook :precondition(cleanHands)
:effect(dinner))(:operatorcarry:precondition
:effect(:and(noGarbage)(not(cleanHands)))ActionExecutionattimei:Ifallpropositionsof:preconditionappearinthestateati,Thenstateati+1iscreatedfromstateati,byaddingtoi,all“add”propositionsin:effects,removingfromi,all“delete”propositionsin:effects.carrynoGarb
cleanHcookdinnercleanHands11GraphPlanPlanningProblemNoopsEverypropositionhasano-opaction,
whichmaintainsitfromtimeitoi+1.E.g.,(:operatornoop-P:precondition(P):effect(P))Noop-PPPExample:DinnerDateProblemInitialConditions:(and(cleanHands)(quiet))Goal: (and(noGarbage)(dinner)(present))Actions: (:operatorcarry:precondition
:effect(and(noGarbage)(not(cleanHands))) (:operatordolly:precondition
:effect(and(noGarbage)(not(quiet))) (:operatorcook:precondition(cleanHands)
:effect(dinner)) (:operatorwrap:precondition(quiet)
:effect(present)) +noops
dinnerpresentcookwrapcarry
cleanHquietnoGarbcleanH
dinnerpresentPropat1Actionat1Propat2Actionat2Propat2noop-dinnernoop-presentSetsofconcurrentactionsperformedateachtime[i]Usesmodelofconcurrencyasinterleaving.Ifactionsaandboccurattimei,thenitmustbevalidto
performeitherafollowedbyb,ORbfollowedbya.APlaninGraphPlan<Actions[i]>ACompleteConsistentPlanGiventhattheinitialstateholdsattime0,aplanisasolutioniff:Complete:Thepreconditionsofeveryoperatorattimei,
issatisfiedbyapropositionattimei.Thegoalpropositionsallholdinthefinalstate.Consistent:Theoperatorsatanytimeicanbeexecutedinanyorder,
withoutoneoftheseoperatorsundoingthe:preconditionsofanotheroperatorattimei.effectsofanotheroperatorattimei.
dinnerpresentcookwrapcarry
cleanHquiet
noGarbcleanH
dinnerpresentPropat1Actionat1Propat2Actionat2Propat3(noopdinner)(nooppresent)Exampleofa
CompleteConsistentPlanInitialConditions:(and(cleanHands)(quiet))Goal: (and(noGarbage)(dinner)(present))GraphPlanAlgorithmPhase1–PlanGraphExpansionCreatesgraphencodingpairwiseconsistencyandreachabilityofactionsandpropositionsfrominitialstate.Graphincludes,asasubset,allplansthatarecompleteandconsistent.Phase2-SolutionExtractionGraphtreatedasakindofconstraintsatisfactionproblem(CSP).Selectswhetherornottoperformeachactionateachtimepoint,byassigningCSPvariablesandtestingconsistency.OutlineIntroductionThePlanningProblemGraphConstructionSolutionExtractionPropertiesTerminationwithfailureGraphPropertiesAPlangraphcompactlyencodesthespaceofconsistentplans,whilepruning...partialstatesandactionsateachtimei
thatarenotreachablefromtheinitialstate.pairsofactionsandpropositions
thataremutuallyinconsistentattimei.plansthatcannotreachthegoals.Constructingtheplanninggraph…(Reachability)InitialpropositionlayerContainspropositionsininitialstate.Example:InitialState,Layer0
cleanHquiet
1Prop1Action2Prop2Action3PropConstructingtheplanninggraph…(Reachability)InitialpropositionlayerContainspropositionsininitialstateActionlayeriIfallaction’spreconditionsareconsistentini-1ThenaddactiontolayeriPropositionlayeri+1ForeachactionatlayeriAddallitseffectsatlayeri+1Example:AddActionsandEffectsnoGarbcleanHquietdinnerpresentcarrydollycookwrap
cleanHquiet
1Prop1Action2Prop2Action3PropConstructingtheplanninggraph…(Reachability)InitialpropositionlayerWritedownjusttheinitialconditionsActionlayeriIfallaction’spreconditionsappearconsistentini-1ThenaddactiontolayeriPropositionlayeri+1ForeachactionatlayeriAddallitseffectsatlayeri+1RepeatuntilallgoalpropositionsappearCanasolutionexist?noGarbcleanHquietdinnerpresentcarrydollycookwrap
cleanHquiet
1Prop1Action2Prop2Action3PropDoallgoalpropositionsappear?Constructingtheplanninggraph…(Consistency)InitialpropositionlayerWritedownjusttheinitialconditionsActionlayeriIfaction’spreconditionsappearconsistentini-1(non-mutex)ThenaddactiontolayeriPropositionlayeri+1ForeachactionatlayeriAddallitseffectsatlayeri+1IdentifymutualexclusionsActionsinlayeriPropositionsinlayeri+1Repeatuntilallgoalpropositionsappearnon-mutex26MutualExclusion:ActionsActionsA,Baremutually
exclusiveatleveli
ifnovalidplancouldpossiblycontainbothati:TheyInterfereAdeletesB’spreconditions,orAdeletesB’seffects,orViceversaorOR....Whatcausestheexclusion?noGarbcleanHquietdinnerpresentcarrydollycookwrap
cleanHquiet
1Prop1Action2Prop2Action3PropnoGarbcleanHquietdinnerpresentcarrydollycookwrap
cleanHquiet
Whatcausestheexclusion?1Prop1Action2Prop2Action3PropnoGarbcleanHquietdinnerpresentcarrydollycookwrap
cleanHquiet
Whatcausestheexclusion?1Prop1Action2Prop2Action3PropnoGarbcleanHquietdinnerpresentcarrydollycookwrap
cleanHquiet
Whatcausestheexclusion?1Prop1Action2Prop2Action3Prop31MutualExclusion:ActionsActionsA,Baremutually
exclusiveatleveli
ifnovalidplancouldpossiblycontainbothati:TheyInterfereAdeletesB’spreconditions,orAdeletesB’seffects,orViceversaorTheyhavecompetingneeds:A&BhaveinconsistentpreconditionsLayer0:completeactionmutexsnoGarbcleanHquietdinnerpresentcarrydollycookwrap
cleanHquiet
1Prop1Action2Prop2Action3Prop33MutualExclusion:PropositionLayerPropositionsP,QareinconsistentatiifnovalidplancouldpossiblycontainbothatiIfati,allwaystoachievePexcludeallwaystoachieveQPQA1A2MNLayer1:addpropositionmutexsnoGarbcleanHquietdinnerpresentcarrydollycookwrap
cleanHquiet
1Prop1Action2Prop2Action3PropNone!Canasolutionexist?noGarbcleanHquietdinnerpresentcarrydollycookwrap
cleanHquiet
1Prop1Action2Prop2Action3PropDoallgoalpropositionsappearnon-mutex?OutlineIntroductionThePlanningProblemGraphConstructionSolutionExtractionPropertiesTerminationwithfailure37GraphplanCreateplangraphlevel1frominitialstateLoopIfgoal
propositionsofthehighestlevel(nonmutex)ThensearchgraphforsolutionIfsolutionfound,thenreturnandterminateElseextendgraphonemorelevelAkindofdoublesearch:forwarddirectionchecksnecessary(butinsufficient)conditionsforasolution,...Backwardsearchverifies...38SearchingforaSolutionRecursivelyfindconsistentactionsachievingallgoalsatt,t-1,...:ForeachgoalpropositionGattimetForeachactionAmakingGtrueattIfAisn’tmutexwithpreviouslychosenactionatt,ThenselectitFinally,IfnoactionofGworks,ThenbacktrackonpreviousG.FinallyIfactionfoundforeachgoalattimet,Thenrecurseonpreconditionsofactionsselected,t-1,Elsebacktrack.Searchingforasolution
noGarb
cleanHquietdinnerpresentcarrydollycookwrap
cleanHquiet
1Prop1Action2Prop2Action3PropSelectactionachievingGoalnoGarbSearchingforasolution
noGarb
cleanHquiet
dinnerpresentcarrydollycookwrap
cleanHquiet
1Prop1Action2Prop2Action3PropSelectactionachievingGoaldinner,ConsistentwithcarryBacktrack
onnoGarbSearchingforasolution
noGarbcleanH
quietdinnerpresentcarrydollycookwrap
cleanHquiet
1Prop1Action2Prop2Action3PropSelectactiondollyBacktrack
onnoGarbSearchingforasolution
noGarbcleanH
quiet
dinnerpresentcarrydollycookwrap
cleanHquiet
1Prop1Action2Prop2Action3PropSelectactionachievingGoaldinner,ConsistentwithdollySearchingforasolution
noGarbcleanH
quiet
dinner
presentcarrydollycookwrap
cleanH
quiet
1Prop1Action2Prop2Action3PropSelectactionachievingGoalpresent,Consistentwdolly,cookSearchingforasolution
noGarbcleanH
quiet
dinner
presentcarrydollycookwrap
cleanH
quiet
1Prop1Action2Prop2Action3PropRecurseonpreconditionsofdolly,cook&wrapAllsatisfiedbyinitialstateAvoidingredundancyNo-opsarealwaysfavoured.guaranteesthattheplanwillnotcontainredundantactions.SupposethePlanGraphwasExtendednoGarbcleanHquietdinnerpresentcarrydollycookwrapcarrydollycookwrap
cleanHquiet
noGarbcleanHquietdinnerpresent1Prop1Action2Prop2Action3PropCanavalidplanusecarry?noGarbcleanHquietdinnerpresentcarrydollycookwrapcarrydollycookwrap
cleanHquiet
noGarbcleanHquietdinnerpresent1Prop1Action2Prop2Action3PropUsingcarryatlevel2isvalidnoGarbcleanHquiet
dinner
presentcarrydollycookwrapcarrydollycookwrap
cleanHquiet
noGarbcleanHquiet
dinner
present1Prop1Action2Prop2Action3PropUsingcarryatlevel2isvalidnoGarbcleanHquiet
dinner
presentcarrydollycookwrapcarrydollycookwrap
cleanH
quiet
noGarbcleanHquiet
dinner
present1Prop1Action2Prop2Action3PropOutlineIntroductionThePlanningProblemGraphConstructionSolutionExtractionPropertiesTerminationwithfailurePlanGraphPropertiesPropositionsmonotonicallyincreaseoncetheyareaddedtoalayertheyareneverremovedinsuccessivelayers;Mutexesmonotonicallydecreaseonceamutexhasdecayeditcanneverreappear;Memoizedsets(tobediscussed)monotonicallydecreaseifagoalsetisachievableatalayer
Thenitwillbeachievableatallsuccessivelayers.Thegraphwilleventuallyreachafixpoint,thatis,
alevelwherefactsandmutexesnolongerchange.FixpointExample:
DoorDomainABFixpointExample:
DoorDomainMovefromroomAtoroomBpre:robotisinAandthedoorisopenadd:robotisinBdel:robotisinAOpendoorpre:doorisclosedadd:doorisopendel:doorisclosedClosedoorpre:doorisopenadd:dooriscloseddel:doorisopennoopnoopMoveMoveOpennoopClosenoopIn(B)In(A)ClosedOpenedLayer4NMoveMoveOpenIn(A)ClosedLayer1OpennoopnoopIn(A)ClosedOpenedLayer2In(B)noopnoopMoveOpennoopCloseIn(A)ClosedOpenedLayer3Layer4isthefixedpoint(calledlevelout)ofthegraphGraphSearchPropertiesGraphplanmayneedtoexpandwellbeyondthefixpointtofindasolution.Why?GripperExampleMovefromoneroomtoanotherpre:robotinthefirstroomadd:robotinthesecondroomdel:robotinthefirstroomPickaballupinagripperpre:robothasafreegripperandisinsameroomasballadd:robotholdingtheballdel:gripperfree,ballinroom.Dropaballinaroompre:robotholdingtheball,robotindestinationroomadd:ballindestinationroom,gripperfree.del:ballbeingheld.GripperExampleInGripper,thefixpointoccursatlayer4,allfactsconcerningthelocationsoftheballsandtherobotarepairwisenon-mutexafter4steps.Thedistancetothesolutionlayerdependsonthenumberofballstobemoved.ForlargenumbersofballsGraphplansearchescopiesofthesamelayersrepeatedly.Forexample,for30ballsthesolutionlayerisatlayer59,54layerscontainidenticalfacts,actionsandmutexes.SearchProperties(cont)Plansdonotcontainredundantsteps.BypreferringNo-opsGraphplanguaranteesparalleloptimality.Theplanwilltakeasshortatimeaspossible.Graphplandoesn’tguaranteesequentialoptimalityMightbepossibletoachieveallgoalsatsomelayerwithfeweractionsatthatlayer.Graphplanreturnsfailureifandonlyifnoplanexists.OutlineIntroductionThePlanningProblemGraphConstructionSolutionExtractionPropertiesTerminationwithfailureSimpleTerminationIfthefixpointisreachedandeither:OneofthegoalsisnotassertedorTwoofthegoalsaremutexThenGraphplancanreturn"Nosolution"withoutanysearchatall.ElsetheremaybehigherorderexclusionswhichGraphplancannotdetectRequiresmoresophisticatedadditionaltestfortermination.WhyContinueAfterthe
FixPoint?facts,actionsandmutexesnolonger
changeafterthefixpoint,N-aryexclusionsDOchange.Newlayersaddtimetothegraph.TimeallowsactionstobespacedsothatN-arymutexeshavetimetodecay.Whilenewthingscanhappenbetweentwosuccessivelayersprogressisbeingmade.Trackn-arymutexes.Terminateontheirfixpoint.MemoizationandTerminationAgoalsetatalayermaybeunsolvableExample,inGripper.Ifagoalsetatlayerkcannotbeachieved,
Thenthatsetismemoizedatlayerk.TopreventwastedsearcheffortCheckseachnewgoalsetatkagainstmemosofkforinfeasibility.Ifanadditionallayerisbuiltandsearchingitcreatesnonewmemos,thentheproblemisunsolvable.Recap:GraphPlanGraphplanwasdevelopedin1995byAvrimBlumandMerrickFurst,atCMU.Graphplansearchesacompactencodingofthestatespacefromtheoperatorsandinitialstate,whichprunesmanyinvalidplans,viola
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年蚌埠禹投集團(tuán)有限公司招聘9人筆試參考題庫附帶答案詳解
- 2025屆高考生物備考教學(xué)設(shè)計:第五章 基因的傳遞規(guī)律之基因分離定律的特例分析
- 東獅牌DSL脫硫催化劑
- 3.2《過秦論》教案-【中職專用】高二語文同步教學(xué)(高教版2023·拓展模塊下冊)
- 2024年12月惠州市紀(jì)檢監(jiān)察綜合事務(wù)中心35人筆試歷年典型考題(歷年真題考點)解題思路附帶答案詳解
- 2025年湖北科技職業(yè)學(xué)院單招職業(yè)技能測試題庫一套
- 第三章第四節(jié) 《沉淀溶解平衡》-2023-2024學(xué)年高二化學(xué)選擇性必修1教學(xué)設(shè)計
- 2025年非金屬礦物制品:耐火合作協(xié)議書
- 生物化學(xué)檢驗?zāi)M考試題(附答案)
- 2025年湖南高爾夫旅游職業(yè)學(xué)院單招職業(yè)適應(yīng)性測試題庫完整
- 綏芬河市2025年上半年招考事業(yè)單位專業(yè)人員易考易錯模擬試題(共500題)試卷后附參考答案
- 小學(xué)數(shù)學(xué)新課程標(biāo)準(zhǔn)(教育部2024年制訂)
- 2025年二級建造師聘用合同范文(三篇)
- 湖北省2025屆高三T8聯(lián)盟模擬考數(shù)學(xué)試卷(解析版)
- 2025年北京電子科技職業(yè)學(xué)院高職單招職業(yè)技能測試近5年??及鎱⒖碱}庫含答案解析
- 2025年包頭輕工職業(yè)技術(shù)學(xué)院高職單招職業(yè)技能測試近5年??及鎱⒖碱}庫含答案解析
- 2024年叉車司機(jī)車輛基本操作知識考試題庫及答案(共70題)
- 工業(yè)統(tǒng)計知識培訓(xùn)
- 2025年蘇州高鐵新城國有資產(chǎn)控股(集團(tuán))有限公司招聘筆試參考題庫附帶答案詳解
- 鄭州市2025年高中畢業(yè)年級第一次質(zhì)量預(yù)測(一模) 化學(xué)試卷(含標(biāo)準(zhǔn)答案)
- 2025年臨床醫(yī)師定期考核必考復(fù)習(xí)題庫及答案(1080題)
評論
0/150
提交評論