安徽省合肥市肥西縣2024年中考數學適應性模擬試題含解析_第1頁
安徽省合肥市肥西縣2024年中考數學適應性模擬試題含解析_第2頁
安徽省合肥市肥西縣2024年中考數學適應性模擬試題含解析_第3頁
安徽省合肥市肥西縣2024年中考數學適應性模擬試題含解析_第4頁
安徽省合肥市肥西縣2024年中考數學適應性模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

安徽省合肥市肥西縣2024年中考數學適應性模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,點P是∠AOB外的一點,點M,N分別是∠AOB兩邊上的點,點P關于OA的對稱點Q恰好落在線段MN上,點P關于OB的對稱點R落在MN的延長線上,若PM=2.5cm,PN=3cm,MN=4cm,則線段QR的長為()A.4.5cm B.5.5cm C.6.5cm D.7cm2.如圖,以O為圓心的圓與直線交于A、B兩點,若△OAB恰為等邊三角形,則弧AB的長度為()A. B.π C.π D.π3.已知一個正多邊形的一個外角為36°,則這個正多邊形的邊數是()A.8B.9C.10D.114.如圖由四個相同的小立方體組成的立體圖像,它的主視圖是().A. B. C. D.5.化簡:-,結果正確的是()A.1 B. C. D.6.如圖所示,△ABC為等腰直角三角形,∠ACB=90°,AC=BC=2,正方形DEFG邊長也為2,且AC與DE在同一直線上,△ABC從C點與D點重合開始,沿直線DE向右平移,直到點A與點E重合為止,設CD的長為x,△ABC與正方形DEFG重合部分(圖中陰影部分)的面積為y,則y與x之間的函數關系的圖象大致是()A. B.C. D.7.下列運算中,計算結果正確的是()A.a2?a3=a6B.a2+a3=a5C.(a2)3=a6D.a12÷a6=a28.已知點,為是反比例函數上一點,當時,m的取值范圍是()A. B. C. D.9.如圖,在中,D、E分別在邊AB、AC上,,交AB于F,那么下列比例式中正確的是A. B. C. D.10.已知拋物線y=ax2+bx+c與x軸交于(x1,0)、(x2,0)兩點,且0<x1<1,1<x2<2與y軸交于(0,-2),下列結論:①2a+b>1;②a+b<2;③3a+b>0;④a<-1,其中正確結論的個數為()A.1個 B.2個 C.3個 D.4個二、填空題(共7小題,每小題3分,滿分21分)11.若圓錐的母線長為4cm,其側面積,則圓錐底面半徑為cm.12.如圖,正方形ABCD中,E是BC邊上一點,以E為圓心,EC為半徑的半圓與以A為圓心,AB為半徑的圓弧外切,則sin∠EAB的值為.13.已知正方形ABCD,AB=1,分別以點A、C為圓心畫圓,如果點B在圓A外,且圓A與圓C外切,那么圓C的半徑長r的取值范圍是_____.14.比較大?。?_________(填<,>或=).15.如圖,將矩形ABCD繞其右下角的頂點按順時針方向旋轉90°至圖①位置,繼續(xù)繞右下角的頂點按順時針方向旋轉90°至圖②位置,以此類推,這樣連續(xù)旋轉2017次.若AB=4,AD=3,則頂點A在整個旋轉過程中所經過的路徑總長為_____.16.在Rt△ABC中,∠ACB=90°,AC=8,BC=6,點D是以點A為圓心4為半徑的圓上一點,連接BD,點M為BD中點,線段CM長度的最大值為_____.17.分解因式:=___________.三、解答題(共7小題,滿分69分)18.(10分)如圖,已知是的外接圓,圓心在的外部,,,求的半徑.19.(5分)計算:1220.(8分)解不等式組,并寫出該不等式組的最大整數解.21.(10分)某超市預測某飲料有發(fā)展前途,用1600元購進一批飲料,面市后果然供不應求,又用6000元購進這批飲料,第二批飲料的數量是第一批的3倍,但單價比第一批貴2元.第一批飲料進貨單價多少元?若二次購進飲料按同一價格銷售,兩批全部售完后,獲利不少于1200元,那么銷售單價至少為多少元?22.(10分)如圖,已知∠ABC=90°,AB=BC.直線l與以BC為直徑的圓O相切于點C.點F是圓O上異于B、C的動點,直線BF與l相交于點E,過點F作AF的垂線交直線BC于點D.如果BE=15,CE=9,求EF的長;證明:①△CDF∽△BAF;②CD=CE;探求動點F在什么位置時,相應的點D位于線段BC的延長線上,且使BC=CD,請說明你的理由.23.(12分)如圖,輪船從點A處出發(fā),先航行至位于點A的南偏西15°且點A相距100km的點B處,再航行至位于點A的南偏東75°且與點B相距200km的點C處.(1)求點C與點A的距離(精確到1km);(2)確定點C相對于點A的方向.(參考數據:2≈1.41424.(14分)如圖,AB為圓O的直徑,點C為圓O上一點,若∠BAC=∠CAM,過點C作直線l垂直于射線AM,垂足為點D.(1)試判斷CD與圓O的位置關系,并說明理由;(2)若直線l與AB的延長線相交于點E,圓O的半徑為3,并且∠CAB=30°,求AD的長.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】試題分析:利用軸對稱圖形的性質得出PM=MQ,PN=NR,進而利用PM=2.5cm,PN=3cm,MN=3cm,得出NQ=MN-MQ=3-2.5=2.5(cm),即可得出QR的長RN+NQ=3+2.5=3.5(cm).故選A.考點:軸對稱圖形的性質2、C【解析】過點作,∵,∴,,∴為等腰直角三角形,,,∵為等邊三角形,∴,∴.∴.故選C.3、C【解析】試題分析:已知一個正多邊形的一個外角為36°,則這個正多邊形的邊數是360÷36=10,故選C.考點:多邊形的內角和外角.4、D【解析】從正面看,共2列,左邊是1個正方形,右邊是2個正方形,且下齊.故選D.5、B【解析】

先將分母進行通分,化為(x+y)(x-y)的形式,分子乘上相應的分式,進行化簡.【詳解】【點睛】本題考查的是分式的混合運算,解題的關鍵就是熟練掌握運算規(guī)則.6、A【解析】

此題可分為兩段求解,即C從D點運動到E點和A從D點運動到E點,列出面積隨動點變化的函數關系式即可.【詳解】解:設CD的長為與正方形DEFG重合部分圖中陰影部分的面積為當C從D點運動到E點時,即時,.當A從D點運動到E點時,即時,,與x之間的函數關系由函數關系式可看出A中的函數圖象與所求的分段函數對應.故選A.【點睛】本題考查的動點變化過程中面積的變化關系,重點是列出函數關系式,但需注意自變量的取值范圍.7、C【解析】

根據同底數冪相乘,底數不變指數相加;冪的乘方,底數不變指數相減;同底數冪相除,底數不變指數相減對各選項分析判斷即可得解.【詳解】A、a2?a3=a2+3=a5,故本選項錯誤;B、a2+a3不能進行運算,故本選項錯誤;C、(a2)3=a2×3=a6,故本選項正確;D、a12÷a6=a12﹣6=a6,故本選項錯誤.故選:C.【點睛】本題考查了同底數冪的乘法、冪的乘方、同底數冪的除法,熟練掌握運算法則是解題的關鍵.8、A【解析】

直接把n的值代入求出m的取值范圍.【詳解】解:∵點P(m,n),為是反比例函數y=-圖象上一點,∴當-1≤n<-1時,∴n=-1時,m=1,n=-1時,m=1,則m的取值范圍是:1≤m<1.故選A.【點睛】此題主要考查了反比例函數圖象上點的坐標性質,正確把n的值代入是解題關鍵.9、C【解析】

根據平行線分線段成比例定理和相似三角形的性質找準線段的對應關系,對各選項分析判斷.【詳解】A、∵EF∥CD,DE∥BC,∴,,∵CE≠AC,∴,故本選項錯誤;B、∵EF∥CD,DE∥BC,∴,,∴,∵AD≠DF,∴,故本選項錯誤;C、∵EF∥CD,DE∥BC,∴,,∴,故本選項正確;D、∵EF∥CD,DE∥BC,∴,,∴,∵AD≠DF,∴,故本選項錯誤.故選C.【點睛】本題考查了平行線分線段成比例的運用及平行于三角形一邊的直線截其它兩邊,所得的新三角形與原三角形相似的定理的運用,在解答時尋找對應線段是關?。?0、A【解析】

如圖,且圖像與y軸交于點,可知該拋物線的開口向下,即,①當時,故①錯誤.②由圖像可知,當時,∴∴故②錯誤.③∵∴,又∵,∴,∴,∴,故③錯誤;④∵,,又∵,∴.故④正確.故答案選A.【點睛】本題考查二次函數系數符號的確定由拋物線的開口方向、對稱軸和拋物線與坐標軸的交點確定.二、填空題(共7小題,每小題3分,滿分21分)11、3【解析】∵圓錐的母線長是5cm,側面積是15πcm2,∴圓錐的側面展開扇形的弧長為:l==6π,∵錐的側面展開扇形的弧長等于圓錐的底面周長,∴r==3cm,12、.【解析】試題分析:設正方形的邊長為y,EC=x,由題意知,AE2=AB2+BE2,即(x+y)2=y2+(y-x)2,由于y≠0,化簡得y=4x,∴sin∠EAB=.考點:1.相切兩圓的性質;2.勾股定理;3.銳角三角函數的定義13、﹣1<r<.【解析】

首先根據題意求得對角線AC的長,設圓A的半徑為R,根據點B在圓A外,得出0<R<1,則-1<-R<0,再根據圓A與圓C外切可得R+r=,利用不等式的性質即可求出r的取值范圍.【詳解】∵正方形ABCD中,AB=1,

∴AC=,

設圓A的半徑為R,

∵點B在圓A外,

∴0<R<1,

∴-1<-R<0,

∴-1<-R<.

∵以A、C為圓心的兩圓外切,

∴兩圓的半徑的和為,

∴R+r=,r=-R,

∴-1<r<.

故答案為:-1<r<.【點睛】本題考查了圓與圓的位置關系,點與圓的位置關系,正方形的性質,勾股定理,不等式的性質.掌握位置關系與數量之間的關系是解題的關鍵.14、<【解析】【分析】根據實數大小比較的方法進行比較即可得答案.【詳解】∵32=9,9<10,∴3<,故答案為:<.【點睛】本題考查了實數大小的比較,熟練掌握實數大小比較的方法是解題的關鍵.15、【解析】分析:首先求得每一次轉動的路線的長,發(fā)現每4次循環(huán),找到規(guī)律然后計算即可.詳解:∵AB=4,BC=3,∴AC=BD=5,轉動一次A的路線長是:轉動第二次的路線長是:轉動第三次的路線長是:轉動第四次的路線長是:0,以此類推,每四次循環(huán),故頂點A轉動四次經過的路線長為:∵2017÷4=504…1,∴頂點A轉動四次經過的路線長為:故答案為點睛:考查旋轉的性質和弧長公式,熟記弧長公式是解題的關鍵.16、1【解析】

作AB的中點E,連接EM、CE,根據直角三角形斜邊上的中線等于斜邊的一半以及三角形的中位線定理求得CE和EM的長,然后在△CEM中根據三邊關系即可求解.【詳解】作AB的中點E,連接EM、CE,在直角△ABC中,AB===10,∵E是直角△ABC斜邊AB上的中點,∴CE=AB=5,∵M是BD的中點,E是AB的中點,∴ME=AD=2,∴在△CEM中,5-2≤CM≤5+2,即3≤CM≤1,∴最大值為1,故答案為1.【點睛】本題考查了點與圓的位置關系、三角形的中位線定理的知識,要結合勾股定理、直角三角形斜邊上的中線等于斜邊的一半解答.17、【解析】

直接利用完全平方公式分解因式得出答案.【詳解】解:=,故答案為.【點睛】此題主要考查了公式法分解因式,正確應用完全平方公式是解題關鍵.三、解答題(共7小題,滿分69分)18、4【解析】

已知△ABC是等腰三角形,根據等腰三角形的性質,作于點,則直線為的中垂線,直線過點,在Rt△OBH中,用半徑表示出OH的長,即可用勾股定理求得半徑的長.【詳解】作于點,則直線為的中垂線,直線過點,,,,即,.【點睛】考查垂徑定理以及勾股定理,掌握垂徑定理是解題的關鍵.19、-1【解析】

先化簡二次根式、計算負整數指數冪、分母有理化、去絕對值符號,再合并同類二次根式即可得.【詳解】原式=1﹣4﹣+1﹣=﹣1.【點睛】本題考查了實數的混合運算,熟練掌握二次根式的性質、分母有理化、負整數指數冪的意義、絕對值的意義是解答本題的關鍵.20、﹣2,﹣1,0【解析】分析:先解不等式①,去括號,移項,系數化為1,再解不等式②,取分母,移項,然后找出不等式組的解集.本題解析:,解不等式①得,x≥?2,解不等式②得,x<1,∴不等式組的解集為?2≤x<1.∴不等式組的最大整數解為x=0,21、(1)第一批飲料進貨單價為8元.(2)銷售單價至少為11元.【解析】【分析】(1)設第一批飲料進貨單價為元,根據等量關系第二批飲料的數量是第一批的3倍,列方程進行求解即可;(2)設銷售單價為元,根據兩批全部售完后,獲利不少于1200元,列不等式進行求解即可得.【詳解】(1)設第一批飲料進貨單價為元,則:解得:經檢驗:是分式方程的解答:第一批飲料進貨單價為8元.(2)設銷售單價為元,則:,化簡得:,解得:,答:銷售單價至少為11元.【點睛】本題考查了分式方程的應用,一元一次不等式的應用,弄清題意,找出等量關系與不等關系是關鍵.22、(1)(2)證明見解析(3)F在直徑BC下方的圓弧上,且【解析】

(1)由直線l與以BC為直徑的圓O相切于點C,即可得∠BCE=90°,∠BFC=∠CFE=90°,則可證得△CEF∽△BEC,然后根據相似三角形的對應邊成比例,即可求得EF的長;(2)①由∠FCD+∠FBC=90°,∠ABF+∠FBC=90°,根據同角的余角相等,即可得∠ABF=∠FCD,同理可得∠AFB=∠CFD,則可證得△CDF∽△BAF;②由△CDF∽△BAF與△CEF∽△BCF,根據相似三角形的對應邊成比例,易證得,又由AB=BC,即可證得CD=CE;(3)由CE=CD,可得BC=CD=CE,然后在Rt△BCE中,求得tan∠CBE的值,即可求得∠CBE的度數,則可得F在⊙O的下半圓上,且.【詳解】(1)解:∵直線l與以BC為直徑的圓O相切于點C.∴∠BCE=90°,又∵BC為直徑,∴∠BFC=∠CFE=90°,∵∠FEC=∠CEB,∴△CEF∽△BEC,∴,∵BE=15,CE=9,即:,解得:EF=;(2)證明:①∵∠FCD+∠FBC=90°,∠ABF+∠FBC=90°,∴∠ABF=∠FCD,同理:∠AFB=∠CFD,∴△CDF∽△BAF;②∵△CDF∽△BAF,∴,又∵∠FCE=∠CBF,∠BFC=∠CFE=90°,∴△CEF∽△BCF,∴,∴,又∵AB=BC,∴CE=CD;(3)解:∵CE=CD,∴BC=CD=CE,在Rt△BCE中,tan∠CBE=,∴∠CBE=30°,故為60°,∴F在直徑BC下方的圓弧上,且.【點睛】考查了相似三角形的判定與性質,圓的切線的性質,圓周角的性質以及三角函數的性質等知識.此題綜合性很強,解題的關鍵是方程思想與數形結合思想的應用.23、(1)173;(2)點C位于點A的南偏東75°方向.【解析】試題分析:(1)作輔助線,過點A作AD⊥BC于點D,構造直角三角形,解直角三角形即可.(2)利用勾股定理的逆定理,判定△ABC為直角三角形;然后根據方向角的定義,即可確定點C相對于點A的方向.試題解析:解:(1)如答圖,過點A作AD⊥B

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論