廣東省廣州市南沙2023-2024學(xué)年畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析_第1頁(yè)
廣東省廣州市南沙2023-2024學(xué)年畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析_第2頁(yè)
廣東省廣州市南沙2023-2024學(xué)年畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析_第3頁(yè)
廣東省廣州市南沙2023-2024學(xué)年畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析_第4頁(yè)
廣東省廣州市南沙2023-2024學(xué)年畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩25頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

廣東省廣州市南沙2023-2024學(xué)年畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.下列運(yùn)算中正確的是()A.x2÷x8=x?6 B.a(chǎn)·a2=a2 C.(a2)3=a5 D.(3a)3=9a32.﹣2×(﹣5)的值是()A.﹣7B.7C.﹣10D.103.將一副三角板按如圖方式擺放,∠1與∠2不一定互補(bǔ)的是()A. B. C. D.4.已知二次函數(shù)y=﹣(x﹣h)2+1(為常數(shù)),在自變量x的值滿足1≤x≤3的情況下,與其對(duì)應(yīng)的函數(shù)值y的最大值為﹣5,則h的值為()A.3﹣或1+ B.3﹣或3+C.3+或1﹣ D.1﹣或1+5.已知二次函數(shù)的圖象與軸交于點(diǎn)、,且,與軸的正半軸的交點(diǎn)在的下方.下列結(jié)論:①;②;③;④.其中正確結(jié)論的個(gè)數(shù)是()個(gè).A.4個(gè) B.3個(gè) C.2個(gè) D.1個(gè)6.已知拋物線y=ax2+bx+c與x軸交于點(diǎn)A和點(diǎn)B,頂點(diǎn)為P,若△ABP組成的三角形恰為等腰直角三角形,則b2﹣4ac的值為()A.1 B.4 C.8 D.127.已知二次函數(shù)y=ax2+bx+c(a≠1)的圖象如圖所示,給出以下結(jié)論:①a+b+c<1;②a﹣b+c<1;③b+2a<1;④abc>1.其中所有正確結(jié)論的序號(hào)是()A.③④ B.②③ C.①④ D.①②③8.下列各組數(shù)中,互為相反數(shù)的是()A.﹣2與2 B.2與2 C.3與 D.3與39.下列計(jì)算中,正確的是()A. B. C. D.10.已知一元二次方程1–(x–3)(x+2)=0,有兩個(gè)實(shí)數(shù)根x1和x2(x1<x2),則下列判斷正確的是()A.–2<x1<x2<3 B.x1<–2<3<x2 C.–2<x1<3<x2 D.x1<–2<x2<3二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.某校為了了解學(xué)生雙休日參加社會(huì)實(shí)踐活動(dòng)的情況,隨機(jī)抽取了100名學(xué)生進(jìn)行調(diào)查,并繪成如圖所示的頻數(shù)分布直方圖.已知該校共有1000名學(xué)生,據(jù)此估計(jì),該校雙休日參加社會(huì)實(shí)踐活動(dòng)時(shí)間在2~2.5小時(shí)之間的學(xué)生數(shù)大約是全體學(xué)生數(shù)的________(填百分?jǐn)?shù)).12.如圖,在□ABCD中,用直尺和圓規(guī)作∠BAD的平分線AG,若AD=5,DE=6,則AG的長(zhǎng)是________.13.在平面直角坐標(biāo)系中,已知,A(2,0),C(0,﹣1),若P為線段OA上一動(dòng)點(diǎn),則CP+AP的最小值為_____.14.已知一個(gè)等腰三角形的兩邊長(zhǎng)分別為2和4,則該等腰三角形的周長(zhǎng)是.15.一個(gè)不透明的口袋中有四個(gè)完全相同的小球,把它們分別標(biāo)號(hào)為,隨機(jī)取出一個(gè)小球后不放回,再隨機(jī)取出一個(gè)小球,則兩次取出的小球標(biāo)號(hào)的和等于4的概率是_____.16.分解因式:=______.三、解答題(共8題,共72分)17.(8分)某校對(duì)學(xué)生就“食品安全知識(shí)”進(jìn)行了抽樣調(diào)查(每人選填一類),繪制了如圖所示的兩幅統(tǒng)計(jì)圖(不完整)。請(qǐng)根據(jù)圖中信息,解答下列問題:(1)根據(jù)圖中數(shù)據(jù),求出扇形統(tǒng)計(jì)圖中的值,并補(bǔ)全條形統(tǒng)計(jì)圖。(2)該校共有學(xué)生900人,估計(jì)該校學(xué)生對(duì)“食品安全知識(shí)”非常了解的人數(shù).18.(8分)已知,關(guān)于x的方程x2+2x-k=0有兩個(gè)不相等的實(shí)數(shù)根.(1)求k的取值范圍;(2)若x1,x2是這個(gè)方程的兩個(gè)實(shí)數(shù)根,求的值;(3)根據(jù)(2)的結(jié)果你能得出什么結(jié)論?19.(8分)如圖,AB是⊙O的直徑,C、D為⊙O上兩點(diǎn),且,過點(diǎn)O作OE⊥AC于點(diǎn)E⊙O的切線AF交OE的延長(zhǎng)線于點(diǎn)F,弦AC、BD的延長(zhǎng)線交于點(diǎn)G.(1)求證:∠F=∠B;(2)若AB=12,BG=10,求AF的長(zhǎng).20.(8分)問題提出(1)如圖1,正方形ABCD的對(duì)角線交于點(diǎn)O,△CDE是邊長(zhǎng)為6的等邊三角形,則O、E之間的距離為;問題探究(2)如圖2,在邊長(zhǎng)為6的正方形ABCD中,以CD為直徑作半圓O,點(diǎn)P為弧CD上一動(dòng)點(diǎn),求A、P之間的最大距離;問題解決(3)窯洞是我省陜北農(nóng)村的主要建筑,窯洞賓館更是一道靚麗的風(fēng)景線,是因?yàn)楦G洞除了它的堅(jiān)固性及特有的外在美之外,還具有冬暖夏涼的天然優(yōu)點(diǎn)家住延安農(nóng)村的一對(duì)即將參加中考的雙胞胎小寶和小貝兩兄弟,發(fā)現(xiàn)自家的窯洞(如圖3所示)的門窗是由矩形ABCD及弓形AMD組成,AB=2m,BC=3.2m,弓高M(jìn)N=1.2m(N為AD的中點(diǎn),MN⊥AD),小寶說(shuō),門角B到門窗弓形弧AD的最大距離是B、M之間的距離.小貝說(shuō)這不是最大的距離,你認(rèn)為誰(shuí)的說(shuō)法正確?請(qǐng)通過計(jì)算求出門角B到門窗弓形弧AD的最大距離.21.(8分)如圖①,在正方形ABCD中,點(diǎn)E與點(diǎn)F分別在線段AC、BC上,且四邊形DEFG是正方形.(1)試探究線段AE與CG的關(guān)系,并說(shuō)明理由.(2)如圖②若將條件中的四邊形ABCD與四邊形DEFG由正方形改為矩形,AB=3,BC=1.①線段AE、CG在(1)中的關(guān)系仍然成立嗎?若成立,請(qǐng)證明,若不成立,請(qǐng)寫出你認(rèn)為正確的關(guān)系,并說(shuō)明理由.②當(dāng)△CDE為等腰三角形時(shí),求CG的長(zhǎng).22.(10分)如圖,點(diǎn)A,B,C都在拋物線y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,AB∥x軸,∠ABC=135°,且AB=1.(1)填空:拋物線的頂點(diǎn)坐標(biāo)為(用含m的代數(shù)式表示);(2)求△ABC的面積(用含a的代數(shù)式表示);(3)若△ABC的面積為2,當(dāng)2m﹣5≤x≤2m﹣2時(shí),y的最大值為2,求m的值.23.(12分)如圖1,已知拋物線y=﹣x2+x+與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,點(diǎn)D是點(diǎn)C關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn),連接CD,過點(diǎn)D作DH⊥x軸于點(diǎn)H,過點(diǎn)A作AE⊥AC交DH的延長(zhǎng)線于點(diǎn)E.(1)求線段DE的長(zhǎng)度;(2)如圖2,試在線段AE上找一點(diǎn)F,在線段DE上找一點(diǎn)P,且點(diǎn)M為直線PF上方拋物線上的一點(diǎn),求當(dāng)△CPF的周長(zhǎng)最小時(shí),△MPF面積的最大值是多少;(3)在(2)問的條件下,將得到的△CFP沿直線AE平移得到△C′F′P′,將△C′F′P′沿C′P′翻折得到△C′P′F″,記在平移過稱中,直線F′P′與x軸交于點(diǎn)K,則是否存在這樣的點(diǎn)K,使得△F′F″K為等腰三角形?若存在求出OK的值;若不存在,說(shuō)明理由.24.(1)問題:如圖1,在四邊形ABCD中,點(diǎn)P為AB上一點(diǎn),∠DPC=∠A=∠B=90°.求證:AD·BC=AP·BP.(2)探究:如圖2,在四邊形ABCD中,點(diǎn)P為AB上一點(diǎn),當(dāng)∠DPC=∠A=∠B=θ時(shí),上述結(jié)論是否依然成立.說(shuō)明理由.(3)應(yīng)用:請(qǐng)利用(1)(2)獲得的經(jīng)驗(yàn)解決問題:如圖3,在△ABD中,AB=6,AD=BD=1.點(diǎn)P以每秒1個(gè)單位長(zhǎng)度的速度,由點(diǎn)A出發(fā),沿邊AB向點(diǎn)B運(yùn)動(dòng),且滿足∠DPC=∠A.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(秒),當(dāng)DC的長(zhǎng)與△ABD底邊上的高相等時(shí),求t的值.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】

根據(jù)同底數(shù)冪的除法法則:底數(shù)不變,指數(shù)相減;同底數(shù)冪的乘法法則:同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加;冪的乘方法則:底數(shù)不變,指數(shù)相乘;積的乘方法則:把每一個(gè)因式分別乘方,再把所得的冪相乘進(jìn)行計(jì)算即可.【詳解】解:A、x2÷x8=x-6,故該選項(xiàng)正確;

B、a?a2=a3,故該選項(xiàng)錯(cuò)誤;

C、(a2)3=a6,故該選項(xiàng)錯(cuò)誤;

D、(3a)3=27a3,故該選項(xiàng)錯(cuò)誤;

故選A.【點(diǎn)睛】此題主要考查了同底數(shù)冪的乘除法、冪的乘方和積的乘方,關(guān)鍵是掌握相關(guān)運(yùn)算法則.2、D【解析】

根據(jù)有理數(shù)乘法法則計(jì)算.【詳解】﹣2×(﹣5)=+(2×5)=10.故選D.【點(diǎn)睛】考查了有理數(shù)的乘法法則,(1)兩數(shù)相乘,同號(hào)得正,異號(hào)得負(fù),并把絕對(duì)值相乘;(2)任何數(shù)同0相乘,都得0;(3)幾個(gè)不等于0的數(shù)相乘,積的符號(hào)由負(fù)因數(shù)的個(gè)數(shù)決定,當(dāng)負(fù)因數(shù)有奇數(shù)個(gè)時(shí),積為負(fù);當(dāng)負(fù)因數(shù)有偶數(shù)個(gè)時(shí),積為正;(4)幾個(gè)數(shù)相乘,有一個(gè)因數(shù)為0時(shí),積為0.3、D【解析】A選項(xiàng):∠1+∠2=360°-90°×2=180°;B選項(xiàng):∵∠2+∠3=90°,∠3+∠4=90°,∴∠2=∠4,∵∠1+∠4=180°,∴∠1+∠2=180°;C選項(xiàng):∵∠ABC=∠DEC=90°,∴AB∥DE,∴∠2=∠EFC,∵∠1+∠EFC=180°,∴∠1+∠2=180°;D選項(xiàng):∠1和∠2不一定互補(bǔ).故選D.點(diǎn)睛:本題主要掌握平行線的性質(zhì)與判定定理,關(guān)鍵在于通過角度之間的轉(zhuǎn)化得出∠1和∠2的互補(bǔ)關(guān)系.4、C【解析】

∵當(dāng)x<h時(shí),y隨x的增大而增大,當(dāng)x>h時(shí),y隨x的增大而減小,∴①若h<1≤x≤3,x=1時(shí),y取得最大值-5,可得:-(1-h)2+1=-5,解得:h=1-或h=1+(舍);②若1≤x≤3<h,當(dāng)x=3時(shí),y取得最大值-5,可得:-(3-h)2+1=-5,解得:h=3+或h=3-(舍).綜上,h的值為1-或3+,故選C.點(diǎn)睛:本題主要考查二次函數(shù)的性質(zhì)和最值,根據(jù)二次函數(shù)的增減性和最值分兩種情況討論是解題的關(guān)鍵.5、B【解析】分析:根據(jù)已知畫出圖象,把x=?2代入得:4a?2b+c=0,把x=?1代入得:y=a?b+c>0,根據(jù)不等式的兩邊都乘以a(a<0)得:c>?2a,由4a?2b+c=0得而0<c<2,得到即可求出2a?b+1>0.詳解:根據(jù)二次函數(shù)y=ax2+bx+c的圖象與x軸交于點(diǎn)(?2,0)、(x1,0),且1<x1<2,與y軸的正半軸的交點(diǎn)在(0,2)的下方,畫出圖象為:如圖把x=?2代入得:4a?2b+c=0,∴①正確;把x=?1代入得:y=a?b+c>0,如圖A點(diǎn),∴②錯(cuò)誤;∵(?2,0)、(x1,0),且1<x1,∴取符合條件1<x1<2的任何一個(gè)x1,?2?x1<?2,∴由一元二次方程根與系數(shù)的關(guān)系知∴不等式的兩邊都乘以a(a<0)得:c>?2a,∴2a+c>0,∴③正確;④由4a?2b+c=0得而0<c<2,∴∴?1<2a?b<0∴2a?b+1>0,∴④正確.所以①③④三項(xiàng)正確.故選B.點(diǎn)睛:屬于二次函數(shù)綜合題,考查二次函數(shù)圖象與系數(shù)的關(guān)系,二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,拋物線與軸的交點(diǎn),屬于??碱}型.6、B【解析】

設(shè)拋物線與x軸的兩交點(diǎn)A、B坐標(biāo)分別為(x1,0),(x2,0),利用二次函數(shù)的性質(zhì)得到P(-,),利用x1、x2為方程ax2+bx+c=0的兩根得到x1+x2=-,x1?x2=,則利用完全平方公式變形得到AB=|x1-x2|=,接著根據(jù)等腰直角三角形的性質(zhì)得到||=?,然后進(jìn)行化簡(jiǎn)可得到b2-1ac的值.【詳解】設(shè)拋物線與x軸的兩交點(diǎn)A、B坐標(biāo)分別為(x1,0),(x2,0),頂點(diǎn)P的坐標(biāo)為(-,),則x1、x2為方程ax2+bx+c=0的兩根,∴x1+x2=-,x1?x2=,∴AB=|x1-x2|====,∵△ABP組成的三角形恰為等腰直角三角形,

∴||=?,=,∴b2-1ac=1.故選B.【點(diǎn)睛】本題考查了拋物線與x軸的交點(diǎn):把求二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)與x軸的交點(diǎn)坐標(biāo)問題轉(zhuǎn)化為解關(guān)于x的一元二次方程.也考查了二次函數(shù)的性質(zhì)和等腰直角三角形的性質(zhì).7、C【解析】試題分析:由拋物線的開口方向判斷a的符號(hào),由拋物線與y軸的交點(diǎn)判斷c的符號(hào),然后根據(jù)對(duì)稱軸及拋物線與x軸交點(diǎn)情況進(jìn)行推理,進(jìn)而對(duì)所得結(jié)論進(jìn)行判斷.解:①當(dāng)x=1時(shí),y=a+b+c=1,故本選項(xiàng)錯(cuò)誤;②當(dāng)x=﹣1時(shí),圖象與x軸交點(diǎn)負(fù)半軸明顯大于﹣1,∴y=a﹣b+c<1,故本選項(xiàng)正確;③由拋物線的開口向下知a<1,∵對(duì)稱軸為1>x=﹣>1,∴2a+b<1,故本選項(xiàng)正確;④對(duì)稱軸為x=﹣>1,∴a、b異號(hào),即b>1,∴abc<1,故本選項(xiàng)錯(cuò)誤;∴正確結(jié)論的序號(hào)為②③.故選B.點(diǎn)評(píng):二次函數(shù)y=ax2+bx+c系數(shù)符號(hào)的確定:(1)a由拋物線開口方向確定:開口方向向上,則a>1;否則a<1;(2)b由對(duì)稱軸和a的符號(hào)確定:由對(duì)稱軸公式x=﹣b2a判斷符號(hào);(3)c由拋物線與y軸的交點(diǎn)確定:交點(diǎn)在y軸正半軸,則c>1;否則c<1;(4)當(dāng)x=1時(shí),可以確定y=a+b+C的值;當(dāng)x=﹣1時(shí),可以確定y=a﹣b+c的值.8、A【解析】

根據(jù)只有符號(hào)不同的兩數(shù)互為相反數(shù),可直接判斷.【詳解】-2與2互為相反數(shù),故正確;2與2相等,符號(hào)相同,故不是相反數(shù);3與互為倒數(shù),故不正確;3與3相同,故不是相反數(shù).故選:A.【點(diǎn)睛】此題主要考查了相反數(shù),關(guān)鍵是觀察特點(diǎn)是否只有符號(hào)不同,比較簡(jiǎn)單.9、D【解析】

根據(jù)積的乘方、合并同類項(xiàng)、同底數(shù)冪的除法以及冪的乘方進(jìn)行計(jì)算即可.【詳解】A、(2a)3=8a3,故本選項(xiàng)錯(cuò)誤;B、a3+a2不能合并,故本選項(xiàng)錯(cuò)誤;C、a8÷a4=a4,故本選項(xiàng)錯(cuò)誤;D、(a2)3=a6,故本選項(xiàng)正確;故選D.【點(diǎn)睛】本題考查了積的乘方、合并同類項(xiàng)、同底數(shù)冪的除法以及冪的乘方,掌握運(yùn)算法則是解題的關(guān)鍵.10、B【解析】

設(shè)y=-(x﹣3)(x+2),y1=1﹣(x﹣3)(x+2)根據(jù)二次函數(shù)的圖像性質(zhì)可知y1=1﹣(x﹣3)(x+2)的圖像可看做y=-(x﹣3)(x+2)的圖像向上平移1個(gè)單位長(zhǎng)度,根據(jù)圖像的開口方向即可得出答案.【詳解】設(shè)y=-(x﹣3)(x+2),y1=1﹣(x﹣3)(x+2)∵y=0時(shí),x=-2或x=3,∴y=-(x﹣3)(x+2)的圖像與x軸的交點(diǎn)為(-2,0)(3,0),∵1﹣(x﹣3)(x+2)=0,∴y1=1﹣(x﹣3)(x+2)的圖像可看做y=-(x﹣3)(x+2)的圖像向上平移1,與x軸的交點(diǎn)的橫坐標(biāo)為x1、x2,∵-1<0,∴兩個(gè)拋物線的開口向下,∴x1<﹣2<3<x2,故選B.【點(diǎn)睛】本題考查二次函數(shù)圖像性質(zhì)及平移的特點(diǎn),根據(jù)開口方向確定函數(shù)的增減性是解題關(guān)鍵.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、.【解析】

用被抽查的100名學(xué)生中參加社會(huì)實(shí)踐活動(dòng)時(shí)間在2~2.5小時(shí)之間的學(xué)生除以抽查的學(xué)生總?cè)藬?shù),即可得解.【詳解】由頻數(shù)分布直方圖知,2~2.5小時(shí)的人數(shù)為100﹣(8+24+30+10)=28,則該校雙休日參加社會(huì)實(shí)踐活動(dòng)時(shí)間在2~2.5小時(shí)之間的學(xué)生數(shù)大約是全體學(xué)生數(shù)的百分比為100%=28%.故答案為:28%.【點(diǎn)睛】本題考查了頻數(shù)分布直方圖以及用樣本估計(jì)總體,利用統(tǒng)計(jì)圖獲取信息時(shí),必須認(rèn)真觀察、分析、研究統(tǒng)計(jì)圖,才能作出正確的判斷和解決問題.一般來(lái)說(shuō),用樣本去估計(jì)總體時(shí),樣本越具有代表性、容量越大,這時(shí)對(duì)總體的估計(jì)也就越精確.12、2【解析】試題解析:連接EG,

∵由作圖可知AD=AE,AG是∠BAD的平分線,

∴∠1=∠2,

∴AG⊥DE,OD=DE=1.

∵四邊形ABCD是平行四邊形,

∴CD∥AB,

∴∠2=∠1,

∴∠1=∠1,

∴AD=DG.

∵AG⊥DE,

∴OA=AG.

在Rt△AOD中,OA==4,

∴AG=2AO=2.

故答案為2.13、【解析】

可以取一點(diǎn)D(0,1),連接AD,作CN⊥AD于點(diǎn)N,PM⊥AD于點(diǎn)M,根據(jù)勾股定理可得AD=3,證明△APM∽△ADO得,PM=AP.當(dāng)CP⊥AD時(shí),CP+AP=CP+PM的值最小,最小值為CN的長(zhǎng).【詳解】如圖,取一點(diǎn)D(0,1),連接AD,作CN⊥AD于點(diǎn)N,PM⊥AD于點(diǎn)M,在Rt△AOD中,∵OA=2,OD=1,∴AD==3,∵∠PAM=∠DAO,∠AMP=∠AOD=90°,∴△APM∽△ADO,∴,即,∴PM=AP,∴PC+AP=PC+PM,∴當(dāng)CP⊥AD時(shí),CP+AP=CP+PM的值最小,最小值為CN的長(zhǎng).∵△CND∽△AOD,∴,即∴CN=.所以CP+AP的最小值為.故答案為:.【點(diǎn)睛】此題考查勾股定理,三角形相似的判定及性質(zhì),最短路徑問題,如何找到AP的等量線段與線段CP相加是解題的關(guān)鍵,由此利用勾股定理、相似三角形做輔助線得到垂線段PM,使問題得解.14、1.【解析】試題分析:因?yàn)?+2<4,所以等腰三角形的腰的長(zhǎng)度是4,底邊長(zhǎng)2,周長(zhǎng):4+4+2=1,答:它的周長(zhǎng)是1,故答案為1.考點(diǎn):等腰三角形的性質(zhì);三角形三邊關(guān)系.15、【解析】試題解析:畫樹狀圖得:由樹狀圖可知:所有可能情況有12種,其中兩次摸出的小球標(biāo)號(hào)的和等于4的占2種,所以其概率=,故答案為.16、x(x+2)(x﹣2).【解析】試題分析:==x(x+2)(x﹣2).故答案為x(x+2)(x﹣2).考點(diǎn):提公因式法與公式法的綜合運(yùn)用;因式分解.三、解答題(共8題,共72分)17、(1),補(bǔ)全條形統(tǒng)計(jì)圖見解析;(2)該校學(xué)生對(duì)“食品安全知識(shí)”非常了解的人數(shù)為135人?!窘馕觥吭囶}分析:(1)由統(tǒng)計(jì)圖中的信息可知,B組學(xué)生有32人,占總數(shù)的40%,由此可得被抽查學(xué)生總?cè)藬?shù)為:32÷40%=80(人),結(jié)合C組學(xué)生有28人可得:m%=28÷80×100%=35%,由此可得m=35;由80-32-28-8=12(人)可知A組由12人,由此即可補(bǔ)全條形統(tǒng)計(jì)圖了;(2)由(1)中計(jì)算可知,A組有12名學(xué)生,占總數(shù)的12÷80×100%=15%,結(jié)合全???cè)藬?shù)為900可得900×15%=135(人),即全?!胺浅A私狻薄笆称钒踩R(shí)”的有135人.試題解析:(1)由已知條件可得:被抽查學(xué)生總數(shù)為32÷40%=80(人),∴m%=28÷80×100%=35%,∴m=35,A組人數(shù)為:80-32-28-8=12(人),將圖形統(tǒng)計(jì)圖補(bǔ)充完整如下圖所示:(2)由題意可得:900×(12÷80×100%)=900×15%=135(人).答:全校學(xué)生對(duì)“食品安全知識(shí)”非常了解的人數(shù)為135人.18、(1)k>-1;(2)2;(3)k>-1時(shí),的值與k無(wú)關(guān).【解析】

(1)由題意得該方程的根的判別式大于零,列出不等式解答即可.(2)將要求的代數(shù)式通分相加轉(zhuǎn)化為含有兩根之和與兩根之積的形式,再根據(jù)根與系數(shù)的關(guān)系代數(shù)求值即可.(3)結(jié)合(1)和(2)結(jié)論可見,k>-1時(shí),的值為定值2,與k無(wú)關(guān).【詳解】(1)∵方程有兩個(gè)不等實(shí)根,∴△>0,即4+4k>0,∴k>-1(2)由根與系數(shù)關(guān)系可知x1+x2=-2,x1x2=-k,∴(3)由(1)可知,k>-1時(shí),的值與k無(wú)關(guān).【點(diǎn)睛】本題考查了一元二次方程的根的判別式,根與系數(shù)的關(guān)系等知識(shí),熟練掌握相關(guān)知識(shí)點(diǎn)是解答關(guān)鍵.19、(1)見解析;(2).【解析】

(1)根據(jù)圓周角定理得到∠GAB=∠B,根據(jù)切線的性質(zhì)得到∠GAB+∠GAF=90°,證明∠F=∠GAB,等量代換即可證明;(2)連接OG,根據(jù)勾股定理求出OG,證明△FAO∽△BOG,根據(jù)相似三角形的性質(zhì)列出比例式,計(jì)算即可.【詳解】(1)證明:∵,∴.∴∠GAB=∠B,∵AF是⊙O的切線,∴AF⊥AO.∴∠GAB+∠GAF=90°.∵OE⊥AC,∴∠F+∠GAF=90°.∴∠F=∠GAB,∴∠F=∠B;(2)解:連接OG.∵∠GAB=∠B,∴AG=BG.∵OA=OB=6,∴OG⊥AB.∴,∵∠FAO=∠BOG=90°,∠F=∠B,∴△FAO∽△BOG,∴.∴.【點(diǎn)睛】本題考查的是切線的性質(zhì)、相似三角形的判定和性質(zhì),掌握?qǐng)A的切線垂直于經(jīng)過切點(diǎn)的半徑是解題的關(guān)鍵.20、(1);(2);(2)小貝的說(shuō)法正確,理由見解析,.【解析】

(1)連接AC,BD,由OE垂直平分DC可得DH長(zhǎng),易知OH、HE長(zhǎng),相加即可;(2)補(bǔ)全⊙O,連接AO并延長(zhǎng)交⊙O右半側(cè)于點(diǎn)P,則此時(shí)A、P之間的距離最大,在Rt△AOD中,由勾股定理可得AO長(zhǎng),易求AP長(zhǎng);(1)小貝的說(shuō)法正確,補(bǔ)全弓形弧AD所在的⊙O,連接ON,OA,OD,過點(diǎn)O作OE⊥AB于點(diǎn)E,連接BO并延長(zhǎng)交⊙O上端于點(diǎn)P,則此時(shí)B、P之間的距離即為門角B到門窗弓形弧AD的最大距離,在Rt△ANO中,設(shè)AO=r,由勾股定理可求出r,在Rt△OEB中,由勾股定理可得BO長(zhǎng),易知BP長(zhǎng).【詳解】解:(1)如圖1,連接AC,BD,對(duì)角線交點(diǎn)為O,連接OE交CD于H,則OD=OC.∵△DCE為等邊三角形,∴ED=EC,∵OD=OC∴OE垂直平分DC,∴DHDC=1.∵四邊形ABCD為正方形,∴△OHD為等腰直角三角形,∴OH=DH=1,在Rt△DHE中,HEDH=1,∴OE=HE+OH=11;(2)如圖2,補(bǔ)全⊙O,連接AO并延長(zhǎng)交⊙O右半側(cè)于點(diǎn)P,則此時(shí)A、P之間的距離最大,在Rt△AOD中,AD=6,DO=1,∴AO1,∴AP=AO+OP=11;(1)小貝的說(shuō)法正確.理由如下,如圖1,補(bǔ)全弓形弧AD所在的⊙O,連接ON,OA,OD,過點(diǎn)O作OE⊥AB于點(diǎn)E,連接BO并延長(zhǎng)交⊙O上端于點(diǎn)P,則此時(shí)B、P之間的距離即為門角B到門窗弓形弧AD的最大距離,由題意知,點(diǎn)N為AD的中點(diǎn),,∴ANAD=1.6,ON⊥AD,在Rt△ANO中,設(shè)AO=r,則ON=r﹣1.2.∵AN2+ON2=AO2,∴1.62+(r﹣1.2)2=r2,解得:r,∴AE=ON1.2,在Rt△OEB中,OE=AN=1.6,BE=AB﹣AE,∴BO,∴BP=BO+PO,∴門角B到門窗弓形弧AD的最大距離為.【點(diǎn)睛】本題考查了圓與多邊形的綜合,涉及了圓的有關(guān)概念及性質(zhì)、等邊三角形的性質(zhì)、正方形和長(zhǎng)方形的性質(zhì)、勾股定理等,靈活的利用兩點(diǎn)之間線段最短,添加輔助線將題中所求最大距離轉(zhuǎn)化為圓外一點(diǎn)到圓上的最大距離是解題的關(guān)鍵.21、(1)AE=CG,AE⊥CG,理由見解析;(2)①位置關(guān)系保持不變,數(shù)量關(guān)系變?yōu)椋焕碛梢娊馕?;②?dāng)△CDE為等腰三角形時(shí),CG的長(zhǎng)為或或.【解析】試題分析:證明≌即可得出結(jié)論.①位置關(guān)系保持不變,數(shù)量關(guān)系變?yōu)樽C明根據(jù)相似的性質(zhì)即可得出.分成三種情況討論即可.試題解析:(1)理由是:如圖1,∵四邊形EFGD是正方形,∴∵四邊形ABCD是正方形,∴∴∴≌∴∵∴∴即(2)①位置關(guān)系保持不變,數(shù)量關(guān)系變?yōu)槔碛墒牵喝鐖D2,連接EG、DF交于點(diǎn)O,連接OC,∵四邊形EFGD是矩形,∴Rt中,OG=OF,Rt中,∴∴D、E、F、C、G在以點(diǎn)O為圓心的圓上,∵∴DF為的直徑,∵∴EG也是的直徑,∴∠ECG=90°,即∴∵∴∵∴∴②由①知:∴設(shè)分三種情況:(i)當(dāng)時(shí),如圖3,過E作于H,則EH∥AD,∴∴由勾股定理得:∴(ii)當(dāng)時(shí),如圖1,過D作于H,∵∴∴∴∴∴(iii)當(dāng)時(shí),如圖5,∴∴綜上所述,當(dāng)為等腰三角形時(shí),CG的長(zhǎng)為或或.點(diǎn)睛:兩組角對(duì)應(yīng),兩三角形相似.22、(1)(m,2m﹣2);(2)S△ABC=﹣;(3)m的值為或10+2.【解析】分析:(1)利用配方法將二次函數(shù)解析式由一般式變形為頂點(diǎn)式,此題得解;(2)過點(diǎn)C作直線AB的垂線,交線段AB的延長(zhǎng)線于點(diǎn)D,由AB∥x軸且AB=1,可得出點(diǎn)B的坐標(biāo)為(m+2,1a+2m?2),設(shè)BD=t,則點(diǎn)C的坐標(biāo)為(m+2+t,1a+2m?2?t),利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可得出關(guān)于t的一元二次方程,解之取其正值即可得出t值,再利用三角形的面積公式即可得出S△ABC的值;(3)由(2)的結(jié)論結(jié)合S△ABC=2可求出a值,分三種情況考慮:①當(dāng)m>2m?2,即m<2時(shí),x=2m?2時(shí)y取最大值,利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可得出關(guān)于m的一元二次方程,解之可求出m的值;②當(dāng)2m?2≤m≤2m?2,即2≤m≤2時(shí),x=m時(shí)y取最大值,利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可得出關(guān)于m的一元一次方程,解之可求出m的值;③當(dāng)m<2m?2,即m>2時(shí),x=2m?2時(shí)y取最大值,利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可得出關(guān)于m的一元一次方程,解之可求出m的值.綜上即可得出結(jié)論.詳解:(1)∵y=ax2﹣2amx+am2+2m﹣2=a(x﹣m)2+2m﹣2,∴拋物線的頂點(diǎn)坐標(biāo)為(m,2m﹣2),故答案為(m,2m﹣2);(2)過點(diǎn)C作直線AB的垂線,交線段AB的延長(zhǎng)線于點(diǎn)D,如圖所示,∵AB∥x軸,且AB=1,∴點(diǎn)B的坐標(biāo)為(m+2,1a+2m﹣2),∵∠ABC=132°,∴設(shè)BD=t,則CD=t,∴點(diǎn)C的坐標(biāo)為(m+2+t,1a+2m﹣2﹣t),∵點(diǎn)C在拋物線y=a(x﹣m)2+2m﹣2上,∴1a+2m﹣2﹣t=a(2+t)2+2m﹣2,整理,得:at2+(1a+1)t=0,解得:t1=0(舍去),t2=﹣,∴S△ABC=AB?CD=﹣;(3)∵△ABC的面積為2,∴﹣=2,解得:a=﹣,∴拋物線的解析式為y=﹣(x﹣m)2+2m﹣2.分三種情況考慮:①當(dāng)m>2m﹣2,即m<2時(shí),有﹣(2m﹣2﹣m)2+2m﹣2=2,整理,得:m2﹣11m+39=0,解得:m1=7﹣(舍去),m2=7+(舍去);②當(dāng)2m﹣2≤m≤2m﹣2,即2≤m≤2時(shí),有2m﹣2=2,解得:m=;③當(dāng)m<2m﹣2,即m>2時(shí),有﹣(2m﹣2﹣m)2+2m﹣2=2,整理,得:m2﹣20m+60=0,解得:m3=10﹣2(舍去),m1=10+2.綜上所述:m的值為或10+2.點(diǎn)睛:本題考查了二次函數(shù)解析式的三種形式、二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征、等腰直角三角形、解一元二次方程以及二次函數(shù)的最值,解題的關(guān)鍵是:(1)利用配方法將二次函數(shù)解析式變形為頂點(diǎn)式;(2)利用等腰直角三角形的性質(zhì)找出點(diǎn)C的坐標(biāo);(3)分m<2、2≤m≤2及m>2三種情況考慮.23、(1)2;(2);(3)見解析.【解析】分析:(1)根據(jù)解析式求得C的坐標(biāo),進(jìn)而求得D的坐標(biāo),即可求得DH的長(zhǎng)度,令y=0,求得A,B的坐標(biāo),然后證得△ACO∽△EAH,根據(jù)對(duì)應(yīng)邊成比例求得EH的長(zhǎng),進(jìn)繼而求得DE的長(zhǎng);(2)找點(diǎn)C關(guān)于DE的對(duì)稱點(diǎn)N(4,),找點(diǎn)C關(guān)于AE的對(duì)稱點(diǎn)G(-2,-),連接GN,交AE于點(diǎn)F,交DE于點(diǎn)P,即G、F、P、N四點(diǎn)共線時(shí),△CPF周長(zhǎng)=CF+PF+CP=GF+PF+PN最小,根據(jù)點(diǎn)的坐標(biāo)求得直線GN的解析式:y=x-;直線AE的解析式:y=-x-,過點(diǎn)M作y軸的平行線交FH于點(diǎn)Q,設(shè)點(diǎn)M(m,-m2+m+),則Q(m,m-),根據(jù)S△MFP=S△MQF+S△MQP,得出S△MFP=-m2+m+,根據(jù)解析式即可求得,△MPF面積的最大值;(3)由(2)可知C(0,),F(xiàn)(0,),P(2,),求得CF=,CP=,進(jìn)而得出△CFP為等邊三角形,邊長(zhǎng)為,翻折之后形成邊長(zhǎng)為的菱形C′F′P′F″,且F′F″=4,然后分三種情況討論求得即可.本題解析:(1)對(duì)于拋物線y=﹣x2+x+,令x=0,得y=,即C(0,),D(2,),∴DH=,令y=0,即﹣x2+x+=0,得x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),∵AE⊥AC,EH⊥AH,∴△ACO∽△EAH,∴=,即=,解得:EH=,則DE=2;(2)找點(diǎn)C關(guān)于DE的對(duì)稱點(diǎn)N(4,),找點(diǎn)C關(guān)于AE的對(duì)稱點(diǎn)G(﹣2,﹣),連接GN,交AE于點(diǎn)F,交DE于點(diǎn)P,即G、F、P、N四點(diǎn)共線時(shí),△CPF周長(zhǎng)=CF+PF+CP=GF+PF+PN最小,直線GN的解析式:y=x﹣;直線AE的解析式:y=﹣x﹣,聯(lián)立得:F(0,﹣),P(2,),過點(diǎn)M作y軸的平行線交FH于點(diǎn)Q,設(shè)點(diǎn)M(m,﹣m2+m+),則Q(m,m﹣),(0<m<2);∴S△MFP=S△MQF+S△

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論