版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
江蘇省南通市合作盟校2024屆高三第一次調(diào)研測(cè)試數(shù)學(xué)試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù)的圖像向右平移個(gè)單位長(zhǎng)度后,得到的圖像關(guān)于軸對(duì)稱,,當(dāng)取得最小值時(shí),函數(shù)的解析式為()A. B.C. D.2.已知函數(shù),若恒成立,則滿足條件的的個(gè)數(shù)為()A.0 B.1 C.2 D.33.定義在R上的偶函數(shù)滿足,且在區(qū)間上單調(diào)遞減,已知是銳角三角形的兩個(gè)內(nèi)角,則的大小關(guān)系是()A. B.C. D.以上情況均有可能4.設(shè),,,則,,三數(shù)的大小關(guān)系是A. B.C. D.5.已知等差數(shù)列中,,,則數(shù)列的前10項(xiàng)和()A.100 B.210 C.380 D.4006.已知拋物線的焦點(diǎn)為,對(duì)稱軸與準(zhǔn)線的交點(diǎn)為,為上任意一點(diǎn),若,則()A.30° B.45° C.60° D.75°7.已知函數(shù),存在實(shí)數(shù),使得,則的最大值為()A. B. C. D.8.已知函數(shù),若對(duì)任意,都有成立,則實(shí)數(shù)的取值范圍是()A. B. C. D.9.已知,橢圓的方程,雙曲線的方程為,和的離心率之積為,則的漸近線方程為()A. B. C. D.10.如圖,正三棱柱各條棱的長(zhǎng)度均相等,為的中點(diǎn),分別是線段和線段的動(dòng)點(diǎn)(含端點(diǎn)),且滿足,當(dāng)運(yùn)動(dòng)時(shí),下列結(jié)論中不正確的是A.在內(nèi)總存在與平面平行的線段B.平面平面C.三棱錐的體積為定值D.可能為直角三角形11.某網(wǎng)店2019年全年的月收支數(shù)據(jù)如圖所示,則針對(duì)2019年這一年的收支情況,下列說法中錯(cuò)誤的是()A.月收入的極差為60 B.7月份的利潤(rùn)最大C.這12個(gè)月利潤(rùn)的中位數(shù)與眾數(shù)均為30 D.這一年的總利潤(rùn)超過400萬元12.已知為正項(xiàng)等比數(shù)列,是它的前項(xiàng)和,若,且與的等差中項(xiàng)為,則的值是()A.29 B.30 C.31 D.32二、填空題:本題共4小題,每小題5分,共20分。13.三對(duì)父子去參加親子活動(dòng),坐在如圖所示的6個(gè)位置上,有且僅有一對(duì)父子是相鄰而坐的坐法有________種(比如:B與D、B與C是相鄰的,A與D、C與D是不相鄰的).14.已知函數(shù)在處的切線與直線平行,則為________.15.已知是拋物線上一點(diǎn),是圓關(guān)于直線對(duì)稱的曲線上任意一點(diǎn),則的最小值為________.16.的展開式中,的系數(shù)為_______(用數(shù)字作答).三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線上一點(diǎn)到焦點(diǎn)的距離為2,(1)求的值與拋物線的方程;(2)拋物線上第一象限內(nèi)的動(dòng)點(diǎn)在點(diǎn)右側(cè),拋物線上第四象限內(nèi)的動(dòng)點(diǎn),滿足,求直線的斜率范圍.18.(12分)已知函數(shù).(1)當(dāng)時(shí),解不等式;(2)設(shè)不等式的解集為,若,求實(shí)數(shù)的取值范圍.19.(12分)已知函數(shù).(1)當(dāng)時(shí),不等式恒成立,求的最小值;(2)設(shè)數(shù)列,其前項(xiàng)和為,證明:.20.(12分)設(shè)函數(shù),,.(1)求函數(shù)的單調(diào)區(qū)間;(2)若函數(shù)有兩個(gè)零點(diǎn),().(i)求的取值范圍;(ii)求證:隨著的增大而增大.21.(12分)設(shè)橢圓的離心率為,圓與軸正半軸交于點(diǎn),圓在點(diǎn)處的切線被橢圓截得的弦長(zhǎng)為.(1)求橢圓的方程;(2)設(shè)圓上任意一點(diǎn)處的切線交橢圓于點(diǎn),試判斷是否為定值?若為定值,求出該定值;若不是定值,請(qǐng)說明理由.22.(10分)在平面直角坐標(biāo)系中,已知橢圓的短軸長(zhǎng)為,直線與橢圓相交于兩點(diǎn),線段的中點(diǎn)為.當(dāng)與連線的斜率為時(shí),直線的傾斜角為(1)求橢圓的標(biāo)準(zhǔn)方程;(2)若是以為直徑的圓上的任意一點(diǎn),求證:
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
先求出平移后的函數(shù)解析式,結(jié)合圖像的對(duì)稱性和得到A和.【詳解】因?yàn)殛P(guān)于軸對(duì)稱,所以,所以,的最小值是.,則,所以.【點(diǎn)睛】本題主要考查三角函數(shù)的圖像變換及性質(zhì).平移圖像時(shí)需注意x的系數(shù)和平移量之間的關(guān)系.2、C【解析】
由不等式恒成立問題分類討論:①當(dāng),②當(dāng),③當(dāng),考查方程的解的個(gè)數(shù),綜合①②③得解.【詳解】①當(dāng)時(shí),,滿足題意,②當(dāng)時(shí),,,,,故不恒成立,③當(dāng)時(shí),設(shè),,令,得,,得,下面考查方程的解的個(gè)數(shù),設(shè)(a),則(a)由導(dǎo)數(shù)的應(yīng)用可得:(a)在為減函數(shù),在,為增函數(shù),則(a),即有一解,又,均為增函數(shù),所以存在1個(gè)使得成立,綜合①②③得:滿足條件的的個(gè)數(shù)是2個(gè),故選:.【點(diǎn)睛】本題考查了不等式恒成立問題及利用導(dǎo)數(shù)研究函數(shù)的解得個(gè)數(shù),重點(diǎn)考查了分類討論的數(shù)學(xué)思想方法,屬難度較大的題型.3、B【解析】
由已知可求得函數(shù)的周期,根據(jù)周期及偶函數(shù)的對(duì)稱性可求在上的單調(diào)性,結(jié)合三角函數(shù)的性質(zhì)即可比較.【詳解】由可得,即函數(shù)的周期,因?yàn)樵趨^(qū)間上單調(diào)遞減,故函數(shù)在區(qū)間上單調(diào)遞減,根據(jù)偶函數(shù)的對(duì)稱性可知,在上單調(diào)遞增,因?yàn)椋卿J角三角形的兩個(gè)內(nèi)角,所以且即,所以即,.故選:.【點(diǎn)睛】本題主要考查函數(shù)值的大小比較,根據(jù)函數(shù)奇偶性和單調(diào)性之間的關(guān)系是解決本題的關(guān)鍵.4、C【解析】
利用對(duì)數(shù)函數(shù),指數(shù)函數(shù)以及正弦函數(shù)的性質(zhì)和計(jì)算公式,將a,b,c與,比較即可.【詳解】由,,,所以有.選C.【點(diǎn)睛】本題考查對(duì)數(shù)值,指數(shù)值和正弦值大小的比較,是基礎(chǔ)題,解題時(shí)選擇合適的中間值比較是關(guān)鍵,注意合理地進(jìn)行等價(jià)轉(zhuǎn)化.5、B【解析】
設(shè)公差為,由已知可得,進(jìn)而求出的通項(xiàng)公式,即可求解.【詳解】設(shè)公差為,,,,.故選:B.【點(diǎn)睛】本題考查等差數(shù)列的基本量計(jì)算以及前項(xiàng)和,屬于基礎(chǔ)題.6、C【解析】
如圖所示:作垂直于準(zhǔn)線交準(zhǔn)線于,則,故,得到答案.【詳解】如圖所示:作垂直于準(zhǔn)線交準(zhǔn)線于,則,在中,,故,即.故選:.【點(diǎn)睛】本題考查了拋物線中角度的計(jì)算,意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.7、A【解析】
畫出分段函數(shù)圖像,可得,由于,構(gòu)造函數(shù),利用導(dǎo)數(shù)研究單調(diào)性,分析最值,即得解.【詳解】由于,,由于,令,,在↗,↘故.故選:A【點(diǎn)睛】本題考查了導(dǎo)數(shù)在函數(shù)性質(zhì)探究中的應(yīng)用,考查了學(xué)生數(shù)形結(jié)合,轉(zhuǎn)化劃歸,綜合分析,數(shù)學(xué)運(yùn)算的能力,屬于較難題.8、D【解析】
先將所求問題轉(zhuǎn)化為對(duì)任意恒成立,即得圖象恒在函數(shù)圖象的上方,再利用數(shù)形結(jié)合即可解決.【詳解】由得,由題意函數(shù)得圖象恒在函數(shù)圖象的上方,作出函數(shù)的圖象如圖所示過原點(diǎn)作函數(shù)的切線,設(shè)切點(diǎn)為,則,解得,所以切線斜率為,所以,解得.故選:D.【點(diǎn)睛】本題考查導(dǎo)數(shù)在不等式恒成立中的應(yīng)用,考查了學(xué)生轉(zhuǎn)化與化歸思想以及數(shù)形結(jié)合的思想,是一道中檔題.9、A【解析】
根據(jù)橢圓與雙曲線離心率的表示形式,結(jié)合和的離心率之積為,即可得的關(guān)系,進(jìn)而得雙曲線的離心率方程.【詳解】橢圓的方程,雙曲線的方程為,則橢圓離心率,雙曲線的離心率,由和的離心率之積為,即,解得,所以漸近線方程為,化簡(jiǎn)可得,故選:A.【點(diǎn)睛】本題考查了橢圓與雙曲線簡(jiǎn)單幾何性質(zhì)應(yīng)用,橢圓與雙曲線離心率表示形式,雙曲線漸近線方程求法,屬于基礎(chǔ)題.10、D【解析】
A項(xiàng)用平行于平面ABC的平面與平面MDN相交,則交線與平面ABC平行;B項(xiàng)利用線面垂直的判定定理;C項(xiàng)三棱錐與三棱錐體積相等,三棱錐的底面積是定值,高也是定值,則體積是定值;D項(xiàng)用反證法說明三角形DMN不可能是直角三角形.【詳解】A項(xiàng),用平行于平面ABC的平面截平面MND,則交線平行于平面ABC,故正確;B項(xiàng),如圖:當(dāng)M、N分別在BB1、CC1上運(yùn)動(dòng)時(shí),若滿足BM=CN,則線段MN必過正方形BCC1B1的中心O,由DO垂直于平面BCC1B1可得平面平面,故正確;C項(xiàng),當(dāng)M、N分別在BB1、CC1上運(yùn)動(dòng)時(shí),△A1DM的面積不變,N到平面A1DM的距離不變,所以棱錐N-A1DM的體積不變,即三棱錐A1-DMN的體積為定值,故正確;D項(xiàng),若△DMN為直角三角形,則必是以∠MDN為直角的直角三角形,但MN的最大值為BC1,而此時(shí)DM,DN的長(zhǎng)大于BB1,所以△DMN不可能為直角三角形,故錯(cuò)誤.故選D【點(diǎn)睛】本題考查了命題真假判斷、棱柱的結(jié)構(gòu)特征、空間想象力和思維能力,意在考查對(duì)線面、面面平行、垂直的判定和性質(zhì)的應(yīng)用,是中檔題.11、D【解析】
直接根據(jù)折線圖依次判斷每個(gè)選項(xiàng)得到答案.【詳解】由圖可知月收入的極差為,故選項(xiàng)A正確;1至12月份的利潤(rùn)分別為20,30,20,10,30,30,60,40,30,30,50,30,7月份的利潤(rùn)最高,故選項(xiàng)B正確;易求得總利潤(rùn)為380萬元,眾數(shù)為30,中位數(shù)為30,故選項(xiàng)C正確,選項(xiàng)D錯(cuò)誤.故選:.【點(diǎn)睛】本題考查了折線圖,意在考查學(xué)生的理解能力和應(yīng)用能力.12、B【解析】
設(shè)正項(xiàng)等比數(shù)列的公比為q,運(yùn)用等比數(shù)列的通項(xiàng)公式和等差數(shù)列的性質(zhì),求出公比,再由等比數(shù)列的求和公式,計(jì)算即可得到所求.【詳解】設(shè)正項(xiàng)等比數(shù)列的公比為q,則a4=16q3,a7=16q6,a4與a7的等差中項(xiàng)為,即有a4+a7=,即16q3+16q6,=,解得q=(負(fù)值舍去),則有S5===1.故選C.【點(diǎn)睛】本題考查等比數(shù)列的通項(xiàng)和求和公式的運(yùn)用,同時(shí)考查等差數(shù)列的性質(zhì),考查運(yùn)算能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、192【解析】
根據(jù)題意,分步進(jìn)行分析:①,在三對(duì)父子中任選1對(duì),安排在相鄰的位置上,②,將剩下的4人安排在剩下的4個(gè)位置,要求父子不能坐在相鄰的位置,由分步計(jì)數(shù)原理計(jì)算可得答案.【詳解】根據(jù)題意,分步進(jìn)行分析:①,在三對(duì)父子中任選1對(duì),有3種選法,由圖可得相鄰的位置有4種情況,將選出的1對(duì)父子安排在相鄰的位置,有種安排方法;②,將剩下的4人安排在剩下的4個(gè)位置,要求父子不能坐在相鄰的位置,有種安排方法,則有且僅有一對(duì)父子是相鄰而坐的坐法種;故答案為:【點(diǎn)睛】本題考查排列、組合的應(yīng)用,涉及分步計(jì)數(shù)原理的應(yīng)用,屬于基礎(chǔ)題.14、【解析】
根據(jù)題意得出,由此可得出實(shí)數(shù)的值.【詳解】,,直線的斜率為,由于函數(shù)在處的切線與直線平行,則.故答案為:.【點(diǎn)睛】本題考查利用函數(shù)的切線與直線平行求參數(shù),解題時(shí)要結(jié)合兩直線的位置關(guān)系得出兩直線斜率之間的關(guān)系,考查計(jì)算能力,屬于基礎(chǔ)題.15、【解析】
由題意求出圓的對(duì)稱圓的圓心坐標(biāo),求出對(duì)稱圓的圓坐標(biāo)到拋物線上的點(diǎn)的距離的最小值,減去半徑即可得到的最小值.【詳解】假設(shè)圓心關(guān)于直線對(duì)稱的點(diǎn)為,則有,解方程組可得,所以曲線的方程為,圓心為,設(shè),則,又,所以,,即,所以,故答案為:.【點(diǎn)睛】該題考查的是有關(guān)動(dòng)點(diǎn)距離的最小值問題,涉及到的知識(shí)點(diǎn)有點(diǎn)關(guān)于直線的對(duì)稱點(diǎn),點(diǎn)與圓上點(diǎn)的距離的最小值為到圓心的距離減半徑,屬于中檔題目.16、60【解析】
根據(jù)二項(xiàng)式定理展開式通項(xiàng),即可求得的系數(shù).【詳解】因?yàn)椋裕瑒t所求項(xiàng)的系數(shù)為.故答案為:60【點(diǎn)睛】本題考查了二項(xiàng)展開式通項(xiàng)公式的應(yīng)用,指定項(xiàng)系數(shù)的求法,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)1;(2)【解析】
(1)根據(jù)點(diǎn)到焦點(diǎn)的距離為2,利用拋物線的定義得,再根據(jù)點(diǎn)在拋物線上有,列方程組求解,(2)設(shè),根據(jù),再由,求得,當(dāng),即時(shí),直線斜率不存在;當(dāng)時(shí),,令,利用導(dǎo)數(shù)求解,【詳解】(1)因?yàn)辄c(diǎn)到焦點(diǎn)的距離為2,即點(diǎn)到準(zhǔn)線的距離為2,得,又,解得,所以拋物線方程為(2)設(shè),由由,則當(dāng),即時(shí),直線斜率不存在;當(dāng)時(shí),令,所以在上分別遞減則【點(diǎn)睛】本題主要考查拋物線定義及方程的應(yīng)用,還考查了分類討論的思想和運(yùn)算求解的能力,屬于中檔題,18、(1)或;(2)【解析】
(1)使用零點(diǎn)分段法,討論分段的取值范圍,然后取它們的并集,可得結(jié)果.(2)利用等價(jià)轉(zhuǎn)化的思想,可得不等式在恒成立,然后解出解集,根據(jù)集合間的包含關(guān)系,可得結(jié)果.【詳解】(1)當(dāng)時(shí),原不等式可化為.①當(dāng)時(shí),則,所以;②當(dāng)時(shí),則,所以;⑧當(dāng)時(shí),則,所以.綜上所述:當(dāng)時(shí),不等式的解集為或.(2)由,則,由題可知:在恒成立,所以,即,即,所以故所求實(shí)數(shù)的取值范圍是.【點(diǎn)睛】本題考查零點(diǎn)分段求解含絕對(duì)值不等式,熟練使用分類討論的方法,以及知識(shí)的交叉應(yīng)用,同時(shí)掌握等價(jià)轉(zhuǎn)化的思想,屬中檔題.19、(1);(2)證明見解析.【解析】
(1),分,,三種情況推理即可;(2)由(1)可得,即,利用累加法即可得到證明.【詳解】(1)由,得.當(dāng)時(shí),方程的,因此在區(qū)間上恒為負(fù)數(shù).所以時(shí),,函數(shù)在區(qū)間上單調(diào)遞減.又,所以函數(shù)在區(qū)間上恒成立;當(dāng)時(shí),方程有兩個(gè)不等實(shí)根,且滿足,所以函數(shù)的導(dǎo)函數(shù)在區(qū)間上大于零,函數(shù)在區(qū)間上單增,又,所以函數(shù)在區(qū)間上恒大于零,不滿足題意;當(dāng)時(shí),在區(qū)間上,函數(shù)在區(qū)間上恒為正數(shù),所以在區(qū)間上恒為正數(shù),不滿足題意;綜上可知:若時(shí),不等式恒成立,的最小值為.(2)由第(1)知:若時(shí),.若,則,即成立.將換成,得成立,即,以此類推,得,,上述各式相加,得,又,所以.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)恒成立問題、證明數(shù)列不等式問題,考查學(xué)生的邏輯推理能力以及數(shù)學(xué)計(jì)算能力,是一道難題.20、(1)見解析;(2)(i)(ii)證明見解析【解析】
(1)求出導(dǎo)函數(shù),分類討論即可求解;(2)(i)結(jié)合(1)的單調(diào)性分析函數(shù)有兩個(gè)零點(diǎn)求解參數(shù)取值范圍;(ii)設(shè),通過轉(zhuǎn)化,討論函數(shù)的單調(diào)性得證.【詳解】(1)因?yàn)?,所以?dāng)時(shí),在上恒成立,所以在上單調(diào)遞增,當(dāng)時(shí),的解集為,的解集為,所以的單調(diào)增區(qū)間為,的單調(diào)減區(qū)間為;(2)(i)由(1)可知,當(dāng)時(shí),在上單調(diào)遞增,至多一個(gè)零點(diǎn),不符題意,當(dāng)時(shí),因?yàn)橛袃蓚€(gè)零點(diǎn),所以,解得,因?yàn)?,且,所以存在,使得,又因?yàn)椋O(shè),則,所以單調(diào)遞增,所以,即,因?yàn)?,所以存在,使得,綜上,;(ii)因?yàn)椋?,因?yàn)?,所以,設(shè),則,所以,解得,所以,所以,設(shè),則,設(shè),則,所以單調(diào)遞增,所以,所以,即,所以單調(diào)遞增,即隨著的增大而增大,所以隨著的增大而增大,命題得證.【點(diǎn)睛】此題考查利用導(dǎo)函數(shù)處理函數(shù)的單調(diào)性,根據(jù)函數(shù)的零點(diǎn)個(gè)數(shù)求參數(shù)的取值范圍,通過等價(jià)轉(zhuǎn)化證明與零點(diǎn)相關(guān)的命題.21、(1);(2)見解析.【解析】
(I)結(jié)合離心率,得到a,b,c的關(guān)系,計(jì)算A的坐標(biāo),計(jì)算切線與橢圓交點(diǎn)坐標(biāo),代入橢圓方程,計(jì)算參數(shù),即可.(II
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度采礦設(shè)備維修保養(yǎng)與升級(jí)合同3篇
- 2024年自動(dòng)化冷凍庫租賃
- 橋梁工程實(shí)習(xí)報(bào)告范文5篇
- 高中學(xué)生歷史學(xué)習(xí)調(diào)查報(bào)告
- 老舊小區(qū)改造項(xiàng)目可行性研究報(bào)告
- 2025年度租賃合同變更合同模板:租賃合同修改協(xié)議3篇
- 2024版林木買賣協(xié)議書
- 2025年度藝術(shù)大賽參賽者作品保密合同3篇
- 湖北理工學(xué)院《電磁場(chǎng)與微波技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 洛陽職業(yè)技術(shù)學(xué)院《土木工程試驗(yàn)》2023-2024學(xué)年第一學(xué)期期末試卷
- 校服服務(wù)方案投標(biāo)方案
- 養(yǎng)老機(jī)構(gòu)安全管理培訓(xùn)課件
- (附答案)2024公需課《百縣千鎮(zhèn)萬村高質(zhì)量發(fā)展工程與城鄉(xiāng)區(qū)域協(xié)調(diào)發(fā)展》試題廣東公需科
- T-CAME 59-2023 醫(yī)院消毒供應(yīng)中心建設(shè)與運(yùn)行管理標(biāo)準(zhǔn)
- 4s店財(cái)務(wù)工作總結(jié)
- 2024外研版初中英語單詞表匯總(七-九年級(jí))中考復(fù)習(xí)必背
- 《海上風(fēng)電場(chǎng)工程巖土試驗(yàn)規(guī)程》(NB/T 10107-2018)
- 高中新校區(qū)辦學(xué)規(guī)劃方案
- T-ACEF 115-2023 高鹽有機(jī)廢水處理應(yīng)用技術(shù)指南
- 腎積水護(hù)理查房
- 無人機(jī)駕駛培訓(xùn)班合作協(xié)議
評(píng)論
0/150
提交評(píng)論