2015-2016學(xué)年甘肅省嘉峪關(guān)九年級上期末數(shù)學(xué)試卷含答案解析_第1頁
2015-2016學(xué)年甘肅省嘉峪關(guān)九年級上期末數(shù)學(xué)試卷含答案解析_第2頁
2015-2016學(xué)年甘肅省嘉峪關(guān)九年級上期末數(shù)學(xué)試卷含答案解析_第3頁
2015-2016學(xué)年甘肅省嘉峪關(guān)九年級上期末數(shù)學(xué)試卷含答案解析_第4頁
2015-2016學(xué)年甘肅省嘉峪關(guān)九年級上期末數(shù)學(xué)試卷含答案解析_第5頁
已閱讀5頁,還剩24頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2015-2016學(xué)年甘肅省嘉峪關(guān)九年級上期末數(shù)學(xué)

試卷含答案解析

一、選擇題(本大題共10小題,每小題3分,共30分)

1.下列方程中,關(guān)于x的一元二次方程是()

A.x2+x+y=0B.1x2-3x+l=0C.(x+3)2=x2+2xD.x2J=2

X

DO是aABC的外接圓,若NAOB=100。,則NACB的度

A.40°B.50°C.60°D.80°

4.某機(jī)械廠七月份的營業(yè)額為100萬元,已知第三季度的總營業(yè)額共

331萬元.如果平均每月增長率為x,則由題意列方程應(yīng)為()

A.100(1+x)2=331B.100+100X2x=331

C.100+100X3x=331D.100[1+(1+x)+(1+x)2]=331

5.下列函數(shù)中,當(dāng)x>0時,y隨x的增大而減小的是()

A.y=x+lB.y=x2-1C.y=.-D.y=-(x-1)2+1

X

6.若。P的半徑為13,圓心P的坐標(biāo)為(5,12),則平面直角坐標(biāo)系

的原點(diǎn)。與。P的位置關(guān)系是()

A.在。P內(nèi)B.在OP上C.在OP外D.無法確定

7.若△ABCs^DEF,AABC與ADEF的相似比為1:2,則AABC

與4DEF的周長比為()

A.1:4B.1:2C.2:1D.1:^2

8.若函數(shù)y=mx2+(m+2)x+lm+1的圖象與x軸只有一個交點(diǎn),那么

m的值為()

A.0B.0或2c.2或-2D.0,2或-2

9.已知正六邊形的邊長為10cm,則它的邊心距為()

A.4cmB.5cmC.5、辰mD.10cm

10.如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過點(diǎn)A(-3,0),

旦yl)、C(-1,

22

二、填空題(本大題共8小題,每小題4分,共32分)

11.從長度分不,為2,4,6,7的四條線段中隨機(jī)取三條,能構(gòu)成三角

形的概率是

12.若|b-l|+《T^=0,且一元二次方程kx2+ax+b=0有兩個實數(shù)根,

則k的取值范疇是

13.。0的半徑為13cm,AB,CD是。O的兩條弦,AB〃CD,AB=

24cm,CD=10cm.則AB和CD之間的距離

14.將拋物線:y=x2-2x向上平移3個單位,再向右平移4個單位得

到的拋物線是.

15.已知正比例函數(shù)y=-2x與反比例函數(shù)y=K的圖象的一個交點(diǎn)坐標(biāo)

X

為(-1,2),則另一個交點(diǎn)的坐標(biāo)為

三、解答題(本大題共5小題,共38分)

19.解方程:

(1.)x2+4x+l=0(用配方法);

v/v-c、-2=0.

/\

C是等邊三角形,P為AABC內(nèi)部一點(diǎn),將AABP繞

點(diǎn)1與AACP'重合,如果AP=3,求PP'的長.

BC

21.已知:^ABC在直角坐標(biāo)平面內(nèi),三個頂點(diǎn)的坐標(biāo)分不為A(0,

3)、B(3,4)、C(2,2)(正方形網(wǎng)格中每個小正方形的邊長是一個單位

F移4個單位長度得到的△A1B1C1,點(diǎn)C1的

言,在網(wǎng)格內(nèi)畫出4A2B2c2,使4A2B2c2與

:1,點(diǎn)C2的坐標(biāo)是s

是平方單位.

22.某水果批發(fā)商場經(jīng)銷一種水果,如果每千克盈利10元,每天可售

出400千克.經(jīng)市場調(diào)查發(fā)覺,在進(jìn)貨價不變的情形下,若每千克漲價1

元,日銷售量將減少20千克.

(1)當(dāng)每千克漲價為多少元時,每天的盈利最多?最多是多少?

(2)若商場只要求保證每天的盈利為4420元,同時又可使顧客得到

實惠,每千克應(yīng)漲價為多少元?

AB是。O的直徑,點(diǎn)C,D在。O上,點(diǎn)E在。O外,

戔AE是。。的切線;

°,AB=6時,求劣弧藍(lán)的長(結(jié)果保留口).

四、解答題(本大題共5小題,共50分)

24.如圖,有甲、乙兩個轉(zhuǎn)盤,每個轉(zhuǎn)盤上各個扇形的圓心角都相等,

讓兩個轉(zhuǎn)盤分不自由轉(zhuǎn)動一次,當(dāng)轉(zhuǎn)盤指針落在分界線上時,重新轉(zhuǎn)動.

(1)請你畫樹狀圖或列表表示所有等可能的結(jié)果.

區(qū)域的顏色能配成綠色的概率.(黃、藍(lán)兩色混

25.如圖,已知反比例函數(shù)y=K與一次函數(shù)y=x+b的圖象在第一象限

X

相3

函數(shù)的表達(dá)式;

數(shù)圖象的另一個交點(diǎn)B的坐標(biāo),并按照圖象寫出使

列函數(shù)值的x的取值范疇.

26.如圖,口ABCD中,E是CD的延長線上一點(diǎn),BE與AD交于點(diǎn)

F,E

^△CEB;

積為2,求口ABCD的面積.

28.如圖,拋物線y=-x2+bx+c與x軸交于A(1,0),B(-3,0)

兩點(diǎn).

(1)求該拋物線的解析式;

(2)設(shè)(1)中的拋物線交y軸與C點(diǎn),在該拋物線的對稱軸上是否

存在占C體管QCAC的周長最小?若存在,求出Q點(diǎn)的坐標(biāo);若不存在,

請歲

/:出物線上的第二象限上是否存在一點(diǎn)P,使4PBC

的^_5/!出點(diǎn)P的坐標(biāo)及^PBC的面積最大值;若沒有,

請歲:

2015-2016學(xué)年甘肅省嘉峪關(guān)六中九年級(上)期末數(shù)學(xué)試卷

參考答案與試題解析

一、選擇題(本大題共10小題,每小題3分,共30分)

1.下列方程中,關(guān)于x的一元二次方程是()

A.x2+x+y=0B.1x2-3x+l=0C.(x+3)2=x2+2xD.x?J=2

【考點(diǎn)】一元二次方程的定義.”

【分析】一元二次方程必須滿足四個條件:(1)未知數(shù)的最高次數(shù)是2;

(2)二次項系數(shù)不為0;(3)是整式方程;(4)含有一個未知數(shù).由這四

個條件對四個選項進(jìn)行驗證,滿足這四個條件者為正確答案.

【解答】解:A、方程含有兩個未知數(shù),故錯誤;

B、符合一元二次方程的定義,正確;

C、整理后方程二次項系數(shù)為0,故錯誤;

D、不是整式方程,故錯誤.

故選B.

【點(diǎn)評】此題要緊考查了一元二次方程的定義,判定一個方程是否是

一元二次方程應(yīng)注意抓住5個方面:''化簡后”;“一個未知數(shù)”;“未知數(shù)的

最高次數(shù)是2”;“二次項的系數(shù)不等于0";“整式方程”.

//\是AABC的外接圓,若NAOB=100。,則NACB的度

A.40°B.50°C.60°D.80°

【考點(diǎn)】圓周角定理.

【分析】已知。。是AABC的外接圓,ZAOB=100°,按照圓周角定

理可求得NACB的度數(shù).

【解答】解::。。是AABC的外接圓,ZAOB=100°,

/.ZACB=1ZAOB=1X100°=50°.

22

故選B.

【點(diǎn)評】本題要緊考查了圓周角定理:在同圓或.等圓中,同弧或等弧

所對的圓周角是所對的圓心角的一半.

【考點(diǎn)】中心對稱圖形;軸對稱圖形.

【分析】按照軸對稱圖形及中心對稱圖形的定義,結(jié)合所給圖形進(jìn)行

判定即可.

【解答】解:A、既不是軸對稱圖形,也不是中心對稱圖形,故本選項

錯誤;

B、是軸對稱圖形,也是中心對稱圖形,故本選項錯誤;

C、不是軸對稱圖形,是中心對稱圖形,故本選項正確;

D、是軸對稱圖形,不是中心對稱圖形,故本選項錯誤;

故選C.

【點(diǎn)評】本題要緊考查了中心對稱圖形與軸對稱圖形的概念,軸對稱

圖形的關(guān)鍵是查找對稱軸,圖形兩部分沿對稱軸折疊后可重合,中心對稱

圖形是要查找對稱中心,圖形旋轉(zhuǎn)180度后與原圖形重合,難度適中.

4.某機(jī)械廠七月份的營業(yè)額為100萬元,已知第三季度的總營業(yè)額共

331萬元.如果平均每月增長率為x,則由題意列方程應(yīng)為()

A.100(1+x)2=331B.100+100X2x=331

C.100+100X3x=331D.100[1+(1+x)+(1+x)2]=331

【考點(diǎn)】由實際咨詢題抽象出一元二次方程.

【專題】增長率咨詢題.

【分析】按照增長率咨詢題,一樣增長后的量=增長前的量X(1+增長

率),關(guān)系式為:七月份月營業(yè)額+八月份月營業(yè)額+九月份月營業(yè)額=331,

把有關(guān)數(shù)值代入即可求解.

【解答】解:設(shè)平均每月的增長率為X,按照題意:八月份的月營業(yè)額

為100X(1+x),

九月份的月銷售額在八月份月銷售額的基礎(chǔ)上增加x,

為100X(1+x)X(1+x),則列出的方程是:100+100(1+x)+100(1

+x)2=331,

100[1+(1+x)+(1+x)2]=331.

故選D.

【點(diǎn)評】此題要緊考查了求平均變化率的方法.若設(shè)變化前的量為a,

變化后的量為b,平均變化率為x,則通過兩次變化后的數(shù)量關(guān)系為a(1

±x)2=b.

5.下列函數(shù)中,當(dāng)x>0時,y隨x的增大而減小的是()

A.y=x+lB.y=x2-1C.y=.-D.y=-(x-1)2+1

【考點(diǎn)】二次函數(shù)的性質(zhì);一次(數(shù)的性質(zhì);反比例函數(shù)的性質(zhì).

【分析】反比例函數(shù)、二次函數(shù)的增減性都有限制條件(即范疇),一

次函數(shù)當(dāng)一次項系數(shù)為負(fù)數(shù)時,y隨著x增大而減小.

【解答】解:A、函數(shù)y=2x+l的圖象是y隨著x增大而增大,故本選

項錯誤;

B、函數(shù)y=x2-l,當(dāng)x<0時,y隨著x增大而減小,當(dāng)x>0時,y

隨著x增大而增大,故本選項錯誤;

C、函數(shù)y=2L,當(dāng)x<0或x>0時,y隨著x增大而減小,故本選項正

確;

D、函數(shù)y=-(x-1)2+1,當(dāng)x<l時,y隨著x增大而增大,當(dāng)x>

1時,y隨著x增大而減小,故本選項錯誤;

故選C.

【點(diǎn)評】本題考查了二次函數(shù)、一次函數(shù)、反比例函數(shù)的增減性.關(guān)

鍵是明確各函數(shù)的增減性的限制條件.

6.若OP的半徑為13,圓心P的坐標(biāo)為(5,12),則平面直角坐標(biāo)系

的原點(diǎn)。與。P的位置關(guān)系是()

A.在。P內(nèi)B.在。P上C.在。P外D.無法確定

【考點(diǎn)】點(diǎn)與圓的位置關(guān)系;坐標(biāo)與圖形性質(zhì).

【專題】運(yùn)算題.

【分析】按照P點(diǎn)坐標(biāo)和勾股定理可運(yùn)算出OP的長,然后按照點(diǎn)與圓

的位置關(guān)系的判定方法判定它們的關(guān)系.

【解答】解:...圓心P的坐標(biāo)為(5,12),

OP=V?+12^13,

二.OP=r,

二.原點(diǎn)。在。P上.

故選B.

【點(diǎn)評】本題考查了點(diǎn)與圓的位置關(guān)系:.設(shè)。。的半徑為r,點(diǎn)P到

圓心的距離OP=d,則有:點(diǎn)P在圓外=d>r;點(diǎn)P在圓上Qd=r;點(diǎn)P在

圓內(nèi)=d<r.

7.若△ABCs^DEF,AABC與ADEF的相似比為1:2,則4ABC

與4DEF的周長比為()

A.1:4B.1:2C.2:1D.1:V2

【考點(diǎn)】相似三角形的性質(zhì).

【專題】壓軸題.

【分析】本題可按照相似三角形的性質(zhì)求解:相似三角形的周長比等

于相似比.

【解答】解:VAABC^ADEF,且相似比為1:2,

「.△ABC與ADEF的周長比為1:2.故選B.

【點(diǎn)評】本題要緊考查了相似三角形的性質(zhì):才目似三角形的周長比等

于相似比.

8.若函數(shù)y=mx2+(m+2)x+lm+1的圖象與x軸只有一個交點(diǎn),那么

m的值為()

A.0B.0或2c.2或-2D.0,2或-2

【考點(diǎn)】拋物線與x軸的交點(diǎn).

【專題】分類討論.

【分析】分為兩種情形:函數(shù)是二次函數(shù),函數(shù)是一次函數(shù),求出即

可.

【解答】解:分為兩種情形:

①當(dāng)函數(shù)是二次函數(shù)時,

,函數(shù)y=mx2+(m+2)x+lm+1的圖象與x軸只有一個交點(diǎn),

△=(m+2)2-4m(lm+1)=0且mWO,

2

解得:m=±2,

②當(dāng)函數(shù)是一次函數(shù)時,m=0,

現(xiàn)在函數(shù)解析式是y=2x+l,和x軸只有一個交點(diǎn),

故選:D.

【點(diǎn)評】本題考查了拋物線與x軸的交點(diǎn),根的判不式的應(yīng)用,用了

分類討論思想,題目比較好,然而也比較容易出錯.

9.已知正六邊形的邊長為10cm,則它的邊心距為()

A.當(dāng)cmB.5cmC.5.75cmD.10cm

【考點(diǎn)】正多邊形和圓.

【分析】已知正六邊形的邊長為10cm,欲求邊心距,可通過邊心距、

邊長的一半和內(nèi)接圓半徑構(gòu)造直角三角形,通過解直角三角形得出.

【解答】解:如圖,

?.?在正六邊形中,OA=OB=AB,

...在RtZXAOG中,OA=AB=10,NAOG=30°,

/一COS30°=10X24?^5方.

AGB

【點(diǎn)評】本題考查學(xué)生對正多邊形的概念把握和運(yùn)算的能力.解答此

題的關(guān)鍵是按照正六邊形的性質(zhì),證出AOAB為正三角形,再利用正三角

形的性質(zhì)解答.

10.如圖是二次函數(shù)丫=2乂2+6乂+?圖象的一部分,圖象過點(diǎn)A(-3,0),

對稱加工古孥一一1,給出四個結(jié)論:

ZM2a+b=0;③a+b+c>0;④若點(diǎn)B(-yl)、C(-1,

y2)/:L勺兩點(diǎn),則yl<y2,

*-H~4)

A.②④B.①④C.①③D.②③

【考點(diǎn)】二次函數(shù)圖象與系數(shù)的關(guān)系.

【專題】壓軸題.

【分析】由拋物線的開口方向判定a與。的關(guān)系,由拋物線與y軸的

交點(diǎn)判定c與0的關(guān)系,然后按照對稱軸及拋物線與x軸交點(diǎn)情形進(jìn)行推

理,進(jìn)而對所得結(jié)論進(jìn)行判定.

【解答】解:...拋物線的開口方向向下,

...拋物線與x軸有兩個交點(diǎn),

/.b2-4ac>0,即b2>4ac,

故①正確

由圖象可知:對稱軸x=-至=-1,

2a

2a-b=0,

故②錯誤;

???拋物線與y軸的交點(diǎn)在y軸的正半軸上,

/.c>0

由圖象可知:當(dāng)x=l時y=0,

a+b+c=O;

故③錯誤;

由圖象可知:若點(diǎn)B(-1,yl),C(-1,y2)為函數(shù)圖象上的兩點(diǎn),

則yl<y2,

故④正確.

故選B

【點(diǎn)評】此題考查二次函數(shù)的性質(zhì),解答本題關(guān)鍵是把握二次函數(shù)丫=

ax2+bx+c系數(shù)符號由拋物線開口方向、對稱軸、拋物線與y軸的交點(diǎn)、拋

物線與x軸交點(diǎn)的個數(shù)確定.

二、填空題(本大題共8小題,每小題4分,共32分)

11.從長度分不為2,4,6,7的四條線段中隨機(jī)取三條,能構(gòu)成三角

形的概率是1.

2

【考點(diǎn)】列表法與樹狀圖法;三角形三邊關(guān)系.

【專題】常規(guī)題型.

【分析】由從長度分不為2,4,6,7的四條線段中隨機(jī)取三條,可能

的結(jié)果為:2,4,6;2,4,7;2,6,7;4,6,7共4種,能構(gòu)成三角形

的是2,6,7;.4,6,7;直截了當(dāng)利用概率公式求解即可求得答案.

【解答】解:.?.從長度分不為2,4,6,7的四條線段中隨機(jī)取三條,

可能的結(jié)果為:2,4,6;2,4,7;2,6,7;4,6,7共4種,能構(gòu)成三

角形的是2,6,7;4,6,7;

廠.能構(gòu)成三角形的概率是:2=工

42

故答案為:A.

2

【點(diǎn)評】此題考查了列舉法求概率的知識.用到的知識點(diǎn)為:概率=所

求情形數(shù)與總情形數(shù)之比.

12.若|b-1|+4T^=O,且一元二次方程kx2+ax+b=0有兩個實數(shù)根,

則k的取值范疇是kW4且kWO.

【考點(diǎn)】根的判不式;非負(fù)數(shù)的性質(zhì):絕對值;非負(fù)數(shù)的性質(zhì):算術(shù)

平方根.

【專題】運(yùn)算題.

【分析】第一按照非負(fù)數(shù)的性質(zhì)求得a、b的值,再由二次函數(shù)的根的

判不式來求k的取值范疇.

【解答】解:「lb-1|+后亍0,

,b-1=0,后q=0,

.解得,b=l,a=4;

又「一元二次方程kx2+ax+b=0有兩個實數(shù)根,

...△=a2-4kb,0且k#0,

即16—4k20,且kWO,

解得,kW4且kWO;

故答案為:kW4且kWO.

【點(diǎn)評】本題要緊考查了非負(fù)數(shù)的性質(zhì)、根的判不式.在解答此題時,

注意關(guān)于x的一元二次方程的二次項系數(shù)不為零.

13.。0的半徑為13cm,AB,CD是。O的兩條弦,AB〃CD,AB=

24cm,CD=10cm.則AB和CD之間的距離7cn或17cm.

【考點(diǎn)】垂徑定理;勾股定理.

【專題】分類討論.

【分析】作OELAB于E,交CD于F,連結(jié)OA、OC,如圖,按照平

行線的性質(zhì)得OF,CD,再利用垂徑定理得到AE=』AB=12,CF=1CD=5,

22

接著按照勾股定理,在RtZiOAE中運(yùn)算出OE=5,在Rt^OCF中運(yùn)算出O

F=12,然后分類討論:當(dāng)圓心。在AB與CD之間時,EF=OF+OE;當(dāng)圓

心O不在AB與CD之間時,EF=OF-OE.

【解答】解:作OELAB于E,交CD于F,連結(jié)OA、OC,如圖,

VAB#CD,

OF±CD,

.,.AE=BE=1AB=12,CF=DF=1CD=5,

22

在RtZXOAE中,VOA=13,AE=12,

*',OE=JOA2_AE^5,

在RtAOCF中,:OC=13,CF=5,

「OF=-CF"[2,

當(dāng)圓心O在AB與CD之間時,EF=OF+OE=12+5=17;

建生?左AB與CD之間時,EF=OF-0E=12-5=7;

(\'\\之間的距離為7cn或17cm.

【點(diǎn)評】本題考查了垂徑定理:垂直于弦的直徑平分這條弦,同時平

分弦所對的兩條弧.也考查了勾股定理.學(xué)會運(yùn)用分類討論的思想解決數(shù)

學(xué)咨詢題.

14.將拋物線:y=x2-2x向上平移3個單位,再向右平移4個單位得

到的拋物線是y=(x-5)2+2或y=x2-10x+27.

【考點(diǎn)】二次函數(shù)圖象與幾何變換.

【專題】壓軸題;幾何變換.

【分析】先將拋物線的解析式化為頂點(diǎn)式,然后按照平移規(guī)律平移即

可得到解析式.

【解答】解:y=x2-2x=(x-1)2-1,

按照平移規(guī)律,向上平移3個單位,再向右平移4個單位得到的拋物

線是:

y=(x-5)2+2,

將頂點(diǎn)式展開得,y=x2-10x+27.

故答案為:y=(x-5)2+2或y=x2-10x+27.

【點(diǎn)評】要緊考查的是函數(shù)圖象的平移,用平移規(guī)律“左加右減,上

加下減”直截了當(dāng)代人函數(shù)解析式求得平移后的函數(shù)解析式.

15.已知正比例函數(shù)y=-2x與反比例函數(shù)y=K的圖象的一個交點(diǎn)坐標(biāo)

為(-1,2),則另一個交點(diǎn)的坐標(biāo)為(1,-2)X.

【考點(diǎn)】反比例函數(shù)圖象的對稱性.

【分析】反比例函數(shù)的圖象是中心對稱圖形,則與通過原點(diǎn)的直線的

兩個交點(diǎn)一定關(guān)于原點(diǎn)對稱.

【解答】解:按照中心對稱的性質(zhì)可知另一個交點(diǎn)的坐標(biāo)是:(1,-2).

故答案為:(1,-2).

【點(diǎn)評】本題考查了反比例函數(shù)圖象的中心對稱性,較為簡單,容易

把握.

(,示一圓柱形輸水管的橫截面,陰影部分為有水部分,如果

輸公水面寬AB為8m,則水的最大深度CD為2m.

D

【考點(diǎn)】垂徑定理的應(yīng)用;勾股定理.

【分析】按照題意可得出A0=5cm,AC=4cm,由勾股定理得出CO的

長,則CD=OD-OC=AO-OC.

【解答】解:如圖所示:,輸水管的半徑為5m,水面寬AB為8m,

水的最大深度為CD,

/.DO±AB,

A0=5m,AC=4m,

CO-..I^2_^2=3(m),

廠?水的最大深度CD為:CD=OD-OC=AO-0C=2m.

故答案是:2.

廿.“的是垂徑定理的應(yīng)用及勾股定理,按照題意構(gòu)造出

為關(guān)鍵.

雙曲線產(chǎn)X上,AB_Lx軸于B,且aAOB的面積S

x

△A

【考點(diǎn)】反比例函數(shù)系數(shù)k的幾何意義.

【分析】先按照反比例函數(shù)圖象所在的象限判定出k的符號,再按照S

△AOB=2求出k的值即可.

【解答】解:...反比例函數(shù)的圖象在二、四象限,

/.k<0,

VSAA0B=2,

,|k|=4,

.?.k=-4.

故答案為:-4.

【點(diǎn)評】本題考查的是反比例系數(shù)k的幾何意義,即在反比例函數(shù)的

圖象上任意一點(diǎn)象坐標(biāo)軸作垂線,這一點(diǎn)和垂足以及坐標(biāo)原點(diǎn)所構(gòu)成的三

角形的面積是限,且保持不變.

2

r

知Rt^ABC是。。的內(nèi)接三角形,其中直角邊AC=6、B

絲是5.

?【考點(diǎn)】圓周角定理;勾股定理.

【分析】由NACB=90°可判定出AB為直徑,利用勾股定理求出AB,

繼而可得出。。的半徑.

【解答】解:由題意得,NACB=90°,

...Rt^ABC是。。的內(nèi)接三角形,

/.AB是。0的直徑,

在RtaABC中,AB=〃C2+B產(chǎn)I。,

則。O的半徑為5.

故答案為:5.

【點(diǎn)評】本題考查了圓周角定理的知識,解答本題的關(guān)鍵是把握:90°

的圓周角所對的弦是直徑.

三、解答題(本大題共5小題,共38分)

19.解方程:

(1)x2+4x+l=0(用配方法);

(2)x(x-2)+x-2-0.

【考點(diǎn)】解一元二次方程-因式分解法;解一元,二次方程-配方法.

【分析】(1)移項,配方,開方,即可得出兩個一元一次方程,求出

方程的解即可;

(2)先分解因式,即可得出兩個一元一次方程,求出方程的解即可.

【解答】解:(1)x2+4x+l=0,

x2+4x=-1,

x2+4x+4=-1+4,

(x+2)2=3,

x+2=+[s,

xl=-2+。x2=-2一娟;

(2)x(x-2)+x-2=0,

(x-2)(x+1)=0,

x-2-0,x+l=0,

xl=2,x2=-1.

【點(diǎn)評】本題考查了解一元二次方程的應(yīng)用,解(1)小題的關(guān)鍵是能

正確配方,解(2)小題的關(guān)鍵是能把一元二次方程轉(zhuǎn)化成一元一次方程,

C是等邊三角形,P為AABC內(nèi)部一點(diǎn),將aABP繞

與LACP'重合,如果AP=3,求PP,的長.

【考點(diǎn)】等邊三角形的判定與性質(zhì);旋轉(zhuǎn)的性質(zhì).

【分析】按照旋轉(zhuǎn)的性質(zhì)得出AP=AP,,再按照旋轉(zhuǎn)的角度為60。和

等邊三角形的判定得出AAPP'為等邊三角形;即可按照等邊三角形的性質(zhì)

得出結(jié)論.

【解答】解:...△ABC是等邊三角形,

二.NBAC=60°

:△ABP繞A點(diǎn)逆時針旋轉(zhuǎn)后與AACP'重合,

.,.AP=AP',NBAP=NCAP',

二.NBAC=/BAP+NCAP=NCAP+NCAP'=NPAP'=60°,

「.△APP'為等邊三角形,

二.PP'=AP=3.

【.點(diǎn)評】本題考查旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)變化前后,對應(yīng)線段、對應(yīng)角分

不相等,圖形的大小、形狀都不改變.同時考查了等邊三角形的判定和性

質(zhì).

21.已知:AABC在直角坐標(biāo)平面內(nèi),三個頂點(diǎn)的坐標(biāo)分不為A(0,

3)、B(3,4)、C(2,2)(正方形網(wǎng)格中每個小正方形的邊長是一個單位

F移4個單位長度得到的△A1B1C1,點(diǎn)C1的

*】,在網(wǎng)格內(nèi)畫出4A2B2c2,使4A2B2c2與

:1,點(diǎn)C2的坐標(biāo)是(1,0);

是10平方單位.

【考點(diǎn)】作圖-位似變換;作圖-平移變換.

【專題】作圖題.

【分析】(1)利用平移的性質(zhì)得出平移后圖象進(jìn)而得出答案;

(2)利用位似圖形的性質(zhì)得出對應(yīng)點(diǎn)位置即可;

(3)利用等腰直角三角形的性質(zhì)得出4A2B2c2的面積.

【解答】解:(1)如圖所示:C1(2,-2);

故答案為:(2,-2);

(2)如圖所示:C2(1,0);

故答案為:(1,0);

(3);A2c22=20,B2C2=20,A2B22=40,

2

【點(diǎn)評】此題要緊考查了位似圖形的性質(zhì)以及平移的性質(zhì)和三角形面

積求法等知識,得出對應(yīng)點(diǎn)坐標(biāo)是解題關(guān)鍵.

22.某水果批發(fā)商場經(jīng)銷一種水果,如果每千克盈利10元,每天可售

出400千克.經(jīng)市場調(diào)查發(fā)覺,在進(jìn)貨價不變的情形下,若每千克漲價1

元,日銷售量將減少20千克.

(1)當(dāng)每千克漲價為多少元時,每天的盈利最多?最多是多少?

(2)若商場只要求保證每天的盈利為4420元,同時又可使顧客得到

實惠,每千克應(yīng)漲價為多少元?

【考點(diǎn)】一元二次方程的應(yīng)用;二次函數(shù)的應(yīng)用.

【分析】本題的關(guān)鍵是按照題意列出一元二次方程,再求其最值.

【解答】解(1)設(shè)漲價x元時總利潤為y,

則y=(10+x)(400-20x)

=-20x2+400x+4000

=-20(x-5)2+4500

當(dāng)x=5時,y取得最大值,最大值為4500.

(2)設(shè)每千克應(yīng)漲價x元,則(10+x)(400-20x)=4420

解得x=3或x=7,

為了使顧客得到實惠,因此x=3.

【點(diǎn)評】本題考查了二次函數(shù)的應(yīng)用及一元二次方程的應(yīng)用,求二次

函數(shù)的最大(小)值有三種方法,第一種可由圖象直截了當(dāng)?shù)贸觯诙N

是配方法,第三種是公式法,常用的是后兩種方法,當(dāng)二次系數(shù)a的絕對

值是較小的整數(shù)時,用配方法較好,如y=-x2-2x+5,y=3x2-6x+l等用

配方法求解比較簡單.

AB是。O的直徑,點(diǎn)C,D在。O上,點(diǎn)E在。O外,

AE是。O的切線;

,AB=6時,求劣弧竟的長(結(jié)果保留口).

【考點(diǎn)】切線的判定;弧長的運(yùn)算.

【專題】證明題.

【分析】(1)按照圓周角定理可得NACB=90°,進(jìn)而可得NCBA+N

CAB=90°,由NEAC=NB可得NCAE+NBAC=90。,從而可得直線AE

是。O的切線;

(2)連接CO,運(yùn)算出AO長,再利用圓周角定理可得NAOC的度數(shù),

然后利用弧長公式可得答案.

【解答】解:(1)...AB是。。的直徑,

二.NACB=90°,

二.NCBA+NCAB=90°,

VZEAC=ZB,

二.NCAE+NBAC=90°,

即BA±AE.

二.AE是的切線.

(2)連接CO,

?.?AB=6,

【點(diǎn)評】此題要緊考查了切線的判定和弧長運(yùn)算,關(guān)鍵是把握切線的

判定定理:通過半徑的外端且垂直于這條半徑的直線是圓的切線.弧長公

式:上迺(弧長為1,圓心角度數(shù)為n,圓的半徑為R).

四、解答題(本大題共5小題,共50分)

24.如圖,有甲、乙兩個轉(zhuǎn)盤,每個轉(zhuǎn)盤上各個扇形的圓心角都相等,

讓兩個轉(zhuǎn)盤分不自由轉(zhuǎn)動一次,當(dāng)轉(zhuǎn)盤指針落在分界線上時,重新轉(zhuǎn)動.

,主心封心工或列表表示所有等可能的結(jié)果.

?區(qū)域的顏色能配成綠色的概率.(黃、藍(lán)兩色混

合2、/黃

【考點(diǎn)】列表法與樹狀圖法.

【分析】(1)第一按照題意畫出樹狀圖,然后由樹狀圖求得所有等可

能的結(jié)果;

山m用F樹技四m去得兩個指針落在區(qū)域的顏色能配成綠色

xAx

黑紅黃藍(lán)黑紅黃藍(lán)黑紅黃藍(lán)

則共有12種等可能的結(jié)果;

(2)...兩個指針落在區(qū)域的顏色能配成綠色的有2種情形,

二.兩個指針落在區(qū)域的顏色能配成綠色的概率為:2=工

【點(diǎn)評】此題考查了列表法或樹狀圖法求概率.用到的知識點(diǎn)為:概

率=所求情形數(shù)與總情形數(shù)之比.

25.如圖,已知反比例函數(shù)y=X與一次函數(shù)y=x+b的圖象在第一象限

相交于點(diǎn)A(1,-k+4)

(1)試確定這兩個函數(shù)的表達(dá)式;

JV

-o,尸一M數(shù)圖象的另一個交點(diǎn)B的坐標(biāo),并按照圖象寫出使

一"一列函數(shù)值的X的取值范疇,

【考點(diǎn)】反比例函數(shù)與一次函數(shù)的交點(diǎn)咨詢題.

【分析】(1)把A(l,-k+4)代入解析式y(tǒng)=K,即可求出k的值;把

求出的A點(diǎn)坐標(biāo)代入一次函數(shù)y=x+b的解析式,即可求出b的值;從而求

出這兩個函數(shù)的表達(dá)式;

(2)將兩個函數(shù)的解析式組成方程組,其解即為另一點(diǎn)的坐標(biāo).當(dāng)一

次函數(shù)的值小于反比例函數(shù)的值時,直線在雙曲線的下方,直截了當(dāng)按照

圖象寫出一次函數(shù)的值小于反比例函數(shù)的值x的取值范疇.

【解答】解:(1).?.已知反比例函數(shù)y=K通過點(diǎn)A(1,-k+4),

X

-k+4=K,即-k+4=k,

1

k=2,

/.A(1,2),

,..一次函數(shù)y=x+b的圖象通過點(diǎn)A(J,2),

/.2=1+b,

b=l,

.二反比例函數(shù)的表達(dá)式為y=Z

一次函數(shù)的表達(dá)式為y=x+l.

fy=x+l

(2)由,2,

y=-

消去y,'得Q+x-2=0.

即(x+2)(x-1)=0,

/.x=-2或x=l.

y=-1或y=2.

.??產(chǎn)-2或尸.

y=_1Iy=2

...點(diǎn)B在第三象限,

...點(diǎn)B的坐標(biāo)為(-2,-1),

由圖象可知,當(dāng)一次函數(shù)的值小于反比例函數(shù)值時,X的取值范疇是X

<-2或0<x<l.

【點(diǎn)評】本題要緊考查了待定系數(shù)法求反比例函數(shù)與一次函數(shù)的解析

式和反比例函數(shù)丫=上中k的幾何意義.那個地點(diǎn)體現(xiàn)了數(shù)形結(jié)合的思想,做

此類題一定要正確確白得k的幾何意義.

26.如圖,口ABCD中,E是CD的延長線上一點(diǎn),BE與AD交于點(diǎn)

F'/

月匕//

/~/D^ACEB;

/積為2,求口ABCD的面積.

BC

【考點(diǎn)】相似三角形的判定與性質(zhì);三角形的面積;平行四邊形的性

質(zhì).

【專題】幾何綜合題.

【分析】(1)要證△ABFs^CEB,需找出兩組對應(yīng)角相等;已知了平

行四邊形的對角相等,再利用AB〃CD,可得一對內(nèi)錯角相等,則可證.

(2)由于△DEFs^EBC,可按照兩三角形的相似比,求出△EBC的

面積,也就求出了四邊形BCDF的面積.同理可按照△DEFs^AFB,求

出AAFB的面積.由此可求出口ABCD的面積.

【解答】(1)證明:...四邊形ABCD是平行四邊形

二.NA=NC,AB〃CD

二.NABF=NCEB

/.△ABF^ACEB

(2)解:?.?四邊形ABCD是平行四邊形

,AD〃BC,AB平行且等于CD

/.ADEF^ACEB,ADEF^AABF

VDE=1flCD

?SADEF_/DE、21SADEF_/DE、21

??----—l)——9------—l)——

SACEBEC9SAABFAB4

SADEF=2

SACEB=18,SAABF=8,

二.S四邊形BCDF=SABCE-SADEF=16

/.S四邊形ABCD=S四邊形BCDF+S^ABF=16+8=24.

【點(diǎn)評】本題考查了平行四邊形的性質(zhì)、相似三角形的判定和性質(zhì)等

知識.

【考點(diǎn)】切線的性質(zhì);圓周角定理;弧長的運(yùn)算.

【分析】(1)連接AE,求出AELBC,按照等腰三角形性質(zhì)求出即可;

(2)求出NABC,求出NABF,即可求出答案;

(3)求出NAOD度數(shù),求出半徑,即可求出答案.

【解答】(1)證明:連接AE,

「AB是。0直徑,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論