版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
江蘇省東海晶都雙語校2024屆中考數(shù)學(xué)對點突破模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.下列說法:①-102②數(shù)軸上的點與實數(shù)成一一對應(yīng)關(guān)系;③﹣2是16的平方根;④任何實數(shù)不是有理數(shù)就是無理數(shù);⑤兩個無理數(shù)的和還是無理數(shù);⑥無理數(shù)都是無限小數(shù),其中正確的個數(shù)有()A.2個 B.3個 C.4個 D.5個2.在實數(shù),有理數(shù)有()A.1個 B.2個 C.3個 D.4個3.為了解某小區(qū)小孩暑期的學(xué)習(xí)情況,王老師隨機調(diào)查了該小區(qū)8個小孩某天的學(xué)習(xí)時間,結(jié)果如下(單位:小時):1.5,1.5,3,4,2,5,2.5,4.5,關(guān)于這組數(shù)據(jù),下列結(jié)論錯誤的是()A.極差是3.5 B.眾數(shù)是1.5 C.中位數(shù)是3 D.平均數(shù)是34.已知矩形ABCD中,AB=3,BC=4,E為BC的中點,以點B為圓心,BA的長為半徑畫圓,交BC于點F,再以點C為圓心,CE的長為半徑畫圓,交CD于點G,則S1-S2=()A.6 B. C.12﹣π D.12﹣π5.有一組數(shù)據(jù):3,4,5,6,6,則這組數(shù)據(jù)的平均數(shù)、眾數(shù)、中位數(shù)分別是()A.4.8,6,6 B.5,5,5 C.4.8,6,5 D.5,6,66.如圖,在Rt△ABC中,∠C=90°,以頂點A為圓心,適當長為半徑畫弧,分別交AC,AB于點M、N,再分別以點M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點P,作射線AP交邊BC于點D,若CD=4,AB=18,則△ABD的面積是()A.18 B.36 C.54 D.727.如圖,已知在Rt△ABC中,∠ABC=90°,點D是BC邊的中點,分別以B、C為圓心,大于線段BC長度一半的長為半徑圓弧,兩弧在直線BC上方的交點為P,直線PD交AC于點E,連接BE,則下列結(jié)論:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED;④ED=AB中,一定正確的是()A.①②③ B.①②④ C.①③④ D.②③④8.如圖所示的幾何體的主視圖是()A. B. C. D.9.納米是一種長度單位,1納米=10-9米,已知某種植物花粉的直徑約為35000納米,那么用科學(xué)記數(shù)法表示該種花粉的直徑為()A.米 B.米 C.米 D.米10.2017年人口普查顯示,河南某市戶籍人口約為2536000人,則該市戶籍人口數(shù)據(jù)用科學(xué)記數(shù)法可表示為()A.2.536×104人 B.2.536×105人 C.2.536×106人 D.2.536×107人二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,中,∠,,的面積為,為邊上一動點(不與,重合),將和分別沿直線,翻折得到和,那么△的面積的最小值為____.12.如圖,在△ABC中,點D是AB邊上的一點,若∠ACD=∠B,AD=1,AC=2,△ADC的面積為1,則△BCD的面積為_____.13.袋中裝有6個黑球和n個白球,經(jīng)過若干次試驗,發(fā)現(xiàn)“若從袋中任摸出一個球,恰是黑球的概率為”,則這個袋中白球大約有_____個.14.如圖,四邊形ABCD中,AD=CD,∠B=2∠D=120°,∠C=75°.則=15.如圖,AB、CD相交于點O,AD=CB,請你補充一個條件,使得△AOD≌△COB,你補充的條件是_____.16.若是關(guān)于的完全平方式,則__________.三、解答題(共8題,共72分)17.(8分)某小學(xué)為了了解學(xué)生每天完成家庭作業(yè)所用時間的情況,從每班抽取相同數(shù)量的學(xué)生進行調(diào)查,并將所得數(shù)據(jù)進行整理,制成條形統(tǒng)計圖和扇形統(tǒng)計圖如下:補全條形統(tǒng)計圖;求扇形統(tǒng)計圖扇形D的圓心角的度數(shù);若該中學(xué)有2000名學(xué)生,請估計其中有多少名學(xué)生能在1.5小時內(nèi)完成家庭作業(yè)?18.(8分)如圖,拋物線y=﹣x2+bx+c與x軸交于點A(﹣1,0)和點B,與y軸交于C(0,3),直線y=+m經(jīng)過點C,與拋物線的另一交點為點D,點P是直線CD上方拋物線上的一個動點,過點P作PF⊥x軸于點F,交直線CD于點E,設(shè)點P的橫坐標為m.(1)求拋物線解析式并求出點D的坐標;(2)連接PD,△CDP的面積是否存在最大值?若存在,請求出面積的最大值;若不存在,請說明理由;(3)當△CPE是等腰三角形時,請直接寫出m的值.19.(8分)如圖,在△ABC中,AB=AC,CD是∠ACB的平分線,DE∥BC,交AC于點E.求證:DE=CE.若∠CDE=35°,求∠A的度數(shù).20.(8分)計算:﹣22+2cos60°+(π﹣3.14)0+(﹣1)201821.(8分)如圖,有長為14m的籬笆,現(xiàn)一面利用墻(墻的最大可用長度a為10m)圍成中間隔有一道籬笆的長方形花圃,設(shè)花圃的寬AB為xm,面積為Sm1.求S與x的函數(shù)關(guān)系式及x值的取值范圍;要圍成面積為45m1的花圃,AB的長是多少米?當AB的長是多少米時,圍成的花圃的面積最大?22.(10分)已知如圖,直線y=﹣x+4與x軸相交于點A,與直線y=x相交于點P.(1)求點P的坐標;(2)動點E從原點O出發(fā),沿著O→P→A的路線向點A勻速運動(E不與點O、A重合),過點E分別作EF⊥x軸于F,EB⊥y軸于B.設(shè)運動t秒時,F(xiàn)的坐標為(a,0),矩形EBOF與△OPA重疊部分的面積為S.直接寫出:S與a之間的函數(shù)關(guān)系式(3)若點M在直線OP上,在平面內(nèi)是否存在一點Q,使以A,P,M,Q為頂點的四邊形為矩形且滿足矩形兩邊AP:PM之比為1:若存在直接寫出Q點坐標。若不存在請說明理由。23.(12分)已知關(guān)于x的一元二次方程有實數(shù)根.(1)求k的取值范圍;(2)若k為正整數(shù),且方程有兩個非零的整數(shù)根,求k的取值.24.如圖,拋物線y=﹣x2+bx+c與x軸交于點A和點B(3,0),與y軸交于點C(0,3),點D是拋物線的頂點,過點D作x軸的垂線,垂足為E,連接DB.(1)求此拋物線的解析式及頂點D的坐標;(2)點M是拋物線上的動點,設(shè)點M的橫坐標為m.①當∠MBA=∠BDE時,求點M的坐標;②過點M作MN∥x軸,與拋物線交于點N,P為x軸上一點,連接PM,PN,將△PMN沿著MN翻折,得△QMN,若四邊形MPNQ恰好為正方形,直接寫出m的值.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】
根據(jù)平方根,數(shù)軸,有理數(shù)的分類逐一分析即可.【詳解】①∵-102=10,∴②數(shù)軸上的點與實數(shù)成一一對應(yīng)關(guān)系,故說法正確;③∵16=4,故-2是16的平方根,故說法正確;④任何實數(shù)不是有理數(shù)就是無理數(shù),故說法正確;⑤兩個無理數(shù)的和還是無理數(shù),如2和-2⑥無理數(shù)都是無限小數(shù),故說法正確;故正確的是②③④⑥共4個;故選C.【點睛】本題考查了有理數(shù)的分類,數(shù)軸及平方根的概念,有理數(shù)都可以化為小數(shù),其中整數(shù)可以看作小數(shù)點后面是零的小數(shù),分數(shù)可以化為有限小數(shù)或無限循環(huán)小數(shù);無理數(shù)是無限不循環(huán)小數(shù),其中有開方開不盡的數(shù),如2,2、D【解析】試題分析:根據(jù)有理數(shù)是有限小數(shù)或無限循環(huán)小數(shù),可得答案:是有理數(shù),故選D.考點:有理數(shù).3、C【解析】
由極差、眾數(shù)、中位數(shù)、平均數(shù)的定義對四個選項一一判斷即可.【詳解】A.極差為5﹣1.5=3.5,此選項正確;B.1.5個數(shù)最多,為2個,眾數(shù)是1.5,此選項正確;C.將式子由小到大排列為:1.5,1.5,2,2.5,3,4,4.5,5,中位數(shù)為×(2.5+3)=2.75,此選項錯誤;D.平均數(shù)為:×(1.5+1.5+2+2.5+3+4+4.5+5)=3,此選項正確.故選C.【點睛】本題主要考查平均數(shù)、眾數(shù)、中位數(shù)、極差的概念,其中在求中位數(shù)的時候一定要將給出的數(shù)據(jù)按從大到小或者從小到大的順序排列起來再進行求解.4、D【解析】
根據(jù)題意可得到CE=2,然后根據(jù)S1﹣S2=S矩形ABCD-S扇形ABF-S扇形GCE,即可得到答案【詳解】解:∵BC=4,E為BC的中點,∴CE=2,∴S1﹣S2=3×4﹣,故選D.【點睛】此題考查扇形面積的計算,矩形的性質(zhì)及面積的計算.5、C【解析】
解:在這一組數(shù)據(jù)中6是出現(xiàn)次數(shù)最多的,故眾數(shù)是6;而將這組數(shù)據(jù)從小到大的順序排列3,4,5,6,6,處于中間位置的數(shù)是5,平均數(shù)是:(3+4+5+6+6)÷5=4.8,故選C.【點睛】本題考查眾數(shù);算術(shù)平均數(shù);中位數(shù).6、B【解析】
根據(jù)題意可知AP為∠CAB的平分線,由角平分線的性質(zhì)得出CD=DH,再由三角形的面積公式可得出結(jié)論.【詳解】由題意可知AP為∠CAB的平分線,過點D作DH⊥AB于點H,∵∠C=90°,CD=1,∴CD=DH=1.∵AB=18,∴S△ABD=AB?DH=×18×1=36故選B.【點睛】本題考查的是作圖-基本作圖,熟知角平分線的作法是解答此題的關(guān)鍵.7、B【解析】
解:根據(jù)作圖過程,利用線段垂直平分線的性質(zhì)對各選項進行判斷:根據(jù)作圖過程可知:PB=CP,∵D為BC的中點,∴PD垂直平分BC,∴①ED⊥BC正確.∵∠ABC=90°,∴PD∥AB.∴E為AC的中點,∴EC=EA,∵EB=EC.∴②∠A=∠EBA正確;③EB平分∠AED錯誤;④ED=AB正確.∴正確的有①②④.故選B.考點:線段垂直平分線的性質(zhì).8、A【解析】
找到從正面看所得到的圖形即可.【詳解】解:從正面可看到從左往右2列一個長方形和一個小正方形,故選A.【點睛】本題考查了三視圖的知識,主視圖是從物體的正面看得到的視圖.9、C【解析】
絕對值小于1的正數(shù)也可以利用科學(xué)記數(shù)法表示,一般形式為a×10-n,與較大數(shù)的科學(xué)記數(shù)法不同的是其所使用的是負指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.【詳解】35000納米=35000×10-9米=3.5×10-5米.故選C.【點睛】此題主要考查了用科學(xué)記數(shù)法表示較小的數(shù),一般形式為a×10-n,其中1≤|a|<10,n為由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.10、C【解析】
科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值≥1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】2536000人=2.536×106人.故選C.【點睛】本題考查了科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.二、填空題(本大題共6個小題,每小題3分,共18分)11、4.【解析】
過E作EG⊥AF,交FA的延長線于G,由折疊可得∠EAG=30°,而當AD⊥BC時,AD最短,依據(jù)BC=7,△ABC的面積為14,即可得到當AD⊥BC時,AD=4=AE=AF,進而得到△AEF的面積最小值為:AF×EG=×4×2=4.【詳解】解:如圖,過E作EG⊥AF,交FA的延長線于G,
由折疊可得,AF=AE=AD,∠BAE=∠BAD,∠DAC=∠FAC,
∵∠BAC=75°,
∴∠EAF=150°,
∴∠EAG=30°,
∴EG=AE=AD,
當AD⊥BC時,AD最短,
∵BC=7,△ABC的面積為14,
∴當AD⊥BC時,,即:,∴.
∴△AEF的面積最小值為:
AF×EG=×4×2=4,故答案為:4.【點睛】本題主要考查了折疊問題,解題的關(guān)鍵是利用對應(yīng)邊和對應(yīng)角相等.12、1【解析】
由∠ACD=∠B結(jié)合公共角∠A=∠A,即可證出△ACD∽△ABC,根據(jù)相似三角形的性質(zhì)可得出=()2=,結(jié)合△ADC的面積為1,即可求出△BCD的面積.【詳解】∵∠ACD=∠B,∠DAC=∠CAB,∴△ACD∽△ABC,∴=()2=()2=,∴S△ABC=4S△ACD=4,∴S△BCD=S△ABC﹣S△ACD=4﹣1=1.故答案為1.【點睛】本題考查相似三角形的判定與性質(zhì),解題的關(guān)鍵是掌握相似三角形的判定與性質(zhì).13、1【解析】試題解析:∵袋中裝有6個黑球和n個白球,
∴袋中一共有球(6+n)個,
∵從中任摸一個球,恰好是黑球的概率為,
∴,
解得:n=1.
故答案為1.14、【解析】
連接AC,過點C作CE⊥AB的延長線于點E,,如圖,先在Rt△BEC中根據(jù)含30度的直角三角形三邊的關(guān)系計算出BC、CE,判斷△AEC為等腰直角三角形,所以∠BAC=45°,AC=,利用即可求解.【詳解】連接AC,過點C作CE⊥AB的延長線于點E,∵∠ABC=2∠D=120°,∴∠D=60°,∵AD=CD,∴△ADC是等邊三角形,∵∠D+∠DAB+∠ABC+∠DCB=360°,∴∠ACB=∠DCB-∠DCA=75°-60°=15°,∠BAC=180°-∠ABC-∠ACB=180°-120°-15°=45°,∴AE=CE,∠EBC=45°+15°=60°,∴∠BCE=90°-60°=30°,設(shè)BE=x,則BC=2x,CE=,在RT△AEC中,AC=,∴,故答案為.【點睛】本題考查了解直角三角形:在直角三角形中,由已知元素求未知元素的過程就是解直角三角形.合理作輔助線是解題的關(guān)鍵.15、∠A=∠C或∠ADC=∠ABC【解析】
本題證明兩三角形全等的三個條件中已經(jīng)具備一邊和一角,所以只要再添加一組對應(yīng)角或邊相等即可.【詳解】添加條件可以是:∠A=∠C或∠ADC=∠ABC.∵添加∠A=∠C根據(jù)AAS判定△AOD≌△COB,添加∠ADC=∠ABC根據(jù)AAS判定△AOD≌△COB,故填空答案:∠A=∠C或∠ADC=∠ABC.【點睛】本題考查了三角形全等的判定方法;判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加時注意:AAA、SSA不能判定兩個三角形全等,不能添加,根據(jù)已知結(jié)合圖形及判定方法選擇條件是正確解題的關(guān)鍵.16、1或-1【解析】【分析】直接利用完全平方公式的定義得出2(m-3)=±8,進而求出答案.詳解:∵x2+2(m-3)x+16是關(guān)于x的完全平方式,∴2(m-3)=±8,解得:m=-1或1,故答案為-1或1.點睛:此題主要考查了完全平方公式,正確掌握完全平方公式的基本形式是解題關(guān)鍵.三、解答題(共8題,共72分)17、(1)補圖見解析;(2)27°;(3)1800名【解析】
(1)根據(jù)A類的人數(shù)是10,所占的百分比是25%即可求得總?cè)藬?shù),然后根據(jù)百分比的意義求得B類的人數(shù);
(2)用360°乘以對應(yīng)的比例即可求解;
(3)用總?cè)藬?shù)乘以對應(yīng)的百分比即可求解.【詳解】(1)抽取的總?cè)藬?shù)是:10÷25%=40(人),在B類的人數(shù)是:40×30%=12(人).;(2)扇形統(tǒng)計圖扇形D的圓心角的度數(shù)是:360×=27°;(3)能在1.5小時內(nèi)完成家庭作業(yè)的人數(shù)是:2000×(25%+30%+35%)=1800(人).考點:條形統(tǒng)計圖、扇形統(tǒng)計圖.18、(1)y=﹣x2+2x+3,D點坐標為();(2)當m=時,△CDP的面積存在最大值,最大值為;(3)m的值為或或.【解析】
(1)利用待定系數(shù)法求拋物線解析式和直線CD的解析式,然后解方程組得D點坐標;
(2)設(shè)P(m,-m2+2m+3),則E(m,-m+3),則PE=-m2+m,利用三角形面積公式得到S△PCD=××(-m2+m)=-m2+m,然后利用二次函數(shù)的性質(zhì)解決問題;
(3)討論:當PC=PE時,m2+(-m2+2m+3-3)2=(-m2+m)2;當CP=CE時,m2+(-m2+2m+3-3)2=m2+(-m+3-3)2;當EC=EP時,m2+(-m+3-3)2=(-m2+m)2,然后分別解方程即可得到滿足條件的m的值.【詳解】(1)把A(﹣1,0),C(0,3)分別代入y=﹣x2+bx+c得,解得,∴拋物線的解析式為y=﹣x2+2x+3;把C(0,3)代入y=﹣x+n,解得n=3,∴直線CD的解析式為y=﹣x+3,解方程組,解得或,∴D點坐標為(,);(2)存在.設(shè)P(m,﹣m2+2m+3),則E(m,﹣m+3),∴PE=﹣m2+2m+3﹣(﹣m+3)=﹣m2+m,∴S△PCD=??(﹣m2+m)=﹣m2+m=﹣(m﹣)2+,當m=時,△CDP的面積存在最大值,最大值為;(3)當PC=PE時,m2+(﹣m2+2m+3﹣3)2=(﹣m2+m)2,解得m=0(舍去)或m=;當CP=CE時,m2+(﹣m2+2m+3﹣3)2=m2+(﹣m+3﹣3)2,解得m=0(舍去)或m=(舍去)或m=;當EC=EP時,m2+(﹣m+3﹣3)2=(﹣m2+m)2,解得m=(舍去)或m=,綜上所述,m的值為或或.【點睛】本題考核知識點:二次函數(shù)的綜合應(yīng)用.解題關(guān)鍵點:靈活運用二次函數(shù)性質(zhì),運用數(shù)形結(jié)合思想.19、(1)見解析;(2)40°.【解析】
(1)根據(jù)角平分線的性質(zhì)可得出∠BCD=∠ECD,由DE∥BC可得出∠EDC=∠BCD,進而可得出∠EDC=∠ECD,再利用等角對等邊即可證出DE=CE;(2)由(1)可得出∠ECD=∠EDC=35°,進而可得出∠ACB=2∠ECD=70°,再根據(jù)等腰三角形的性質(zhì)結(jié)合三角形內(nèi)角和定理即可求出∠A的度數(shù).【詳解】(1)∵CD是∠ACB的平分線,∴∠BCD=∠ECD.∵DE∥BC,∴∠EDC=∠BCD,∴∠EDC=∠ECD,∴DE=CE.(2)∵∠ECD=∠EDC=35°,∴∠ACB=2∠ECD=70°.∵AB=AC,∴∠ABC=∠ACB=70°,∴∠A=180°﹣70°﹣70°=40°.【點睛】本題考查了等腰三角形的判定與性質(zhì)、平行線的性質(zhì)以及角平分線.解題的關(guān)鍵是:(1)根據(jù)平行線的性質(zhì)結(jié)合角平分線的性質(zhì)找出∠EDC=∠ECD;(2)利用角平分線的性質(zhì)結(jié)合等腰三角形的性質(zhì)求出∠ACB=∠ABC=70°.20、-1【解析】
原式利用乘方的意義,特殊角的三角函數(shù)值,零指數(shù)冪法則計算即可求出值.【詳解】解:原式=﹣4+1+1+1=﹣1.【點睛】此題考查了實數(shù)的運算,熟練掌握運算法則是解本題的關(guān)鍵.21、(1)S=﹣3x1+14x,≤x<8;(1)5m;(3)46.67m1【解析】
(1)設(shè)花圃寬AB為xm,則長為(14-3x),利用長方形的面積公式,可求出S與x關(guān)系式,根據(jù)墻的最大長度求出x的取值范圍;(1)根據(jù)(1)所求的關(guān)系式把S=2代入即可求出x,即AB;(3)根據(jù)二次函數(shù)的性質(zhì)及x的取值范圍求出即可.【詳解】解:(1)根據(jù)題意,得S=x(14﹣3x),即所求的函數(shù)解析式為:S=﹣3x1+14x,又∵0<14﹣3x≤10,∴;(1)根據(jù)題意,設(shè)花圃寬AB為xm,則長為(14-3x),∴﹣3x1+14x=2.整理,得x1﹣8x+15=0,解得x=3或5,當x=3時,長=14﹣9=15>10不成立,當x=5時,長=14﹣15=9<10成立,∴AB長為5m;(3)S=14x﹣3x1=﹣3(x﹣4)1+48∵墻的最大可用長度為10m,0≤14﹣3x≤10,∴,∵對稱軸x=4,開口向下,∴當x=m,有最大面積的花圃.【點睛】二次函數(shù)在實際生活中的應(yīng)用是本題的考點,根據(jù)題目給出的條件,找出合適的等量關(guān)系,列出方程是解題的關(guān)鍵.22、(1);(2);(3)【解析】
(1)聯(lián)立兩直線解析式,求出交點P坐標即可;(2)由F坐標確定出OF的長,得到E的橫坐標為a,代入直線OP解析式表示出E縱坐標,即為EF的長,分兩種情況考慮:當時,矩形EBOF與三角形OPA重疊部分為直角三角形OEF,表示出三角形OEF面積S與a的函數(shù)關(guān)系式;當時,重合部分為直角梯形面積,求出S與a函數(shù)關(guān)系式.(3)根據(jù)(1)所求,先求得A點坐標,再確定AP和PM的長度分別是2和2,又由OP=2,得到P怎么平移會得到M,按同樣的方法平移A即可得到Q.【詳解】解:(1)聯(lián)立得:,解得:;∴P的坐標為;(2)分兩種情況考慮:當時,由F坐標為(a,0),得到OF=a,把E橫坐標為a,代入得:即此時當時,重合的面積就是梯形面積,F(xiàn)點的橫坐標為a,所以E點縱坐標為M點橫坐標為:-3a+12,∴所以;(3)令中的y=0,解得:x=4,則A的坐標為(4,0)則AP=,則PM=2又∵OP=∴點P向左平移3個單位在向下平移可以得到M1點P向右平移3個單位在向上平移可以得到M2∴A向左平移3個單位在向下平移可以得到Q1(1,-)A向右平移3個單位在向上平移可以得到Q1(7,)所以,存在Q點,且坐標是【點睛】本題考查一次函數(shù)綜合題、勾股定理以及逆定理、矩形的性質(zhì)、全等三角形的判定和性質(zhì)、解直角三角形等知識,解題的關(guān)鍵是學(xué)會用分類討論的思想思考問題,屬于中考壓軸題.23、(1);(2)k=1【解析】
(1)根據(jù)一元二次方程2x2+4x+k﹣1=0有實數(shù)根,可得出△≥0,解不等式即可得出結(jié)論;(2)分別把k的正整數(shù)值代入方程2x2+4x+k﹣1=0,根據(jù)解方程的結(jié)果進行分析解答.【詳解】(1)由題意得:△=16﹣8(k﹣1)≥0,∴k≤1.(2)∵k為正整數(shù),∴k=1,2,1.當k=1時,方程2x2+4x+k﹣1=0變?yōu)椋?x2+4x=0,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025安徽建筑安全員-B證考試題庫附答案
- 貴州財經(jīng)職業(yè)學(xué)院《材料與施工工藝》2023-2024學(xué)年第一學(xué)期期末試卷
- 貴陽幼兒師范高等??茖W(xué)?!豆芾韺W(xué)概論》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025年上海市建筑安全員考試題庫及答案
- 2025年河南省建筑安全員考試題庫附答案
- 貴陽信息科技學(xué)院《薪酬與福利》2023-2024學(xué)年第一學(xué)期期末試卷
- 硅湖職業(yè)技術(shù)學(xué)院《食品試驗設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷
- 貴陽學(xué)院《物理污染控制工程》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025云南省建筑安全員C證考試題庫
- 廣州新華學(xué)院《音樂劇演唱(2)》2023-2024學(xué)年第一學(xué)期期末試卷
- 農(nóng)業(yè)植保機初級課程考試題庫(含答案)
- 2023-2024學(xué)年浙江省寧波市慈溪市七年級(上)期末數(shù)學(xué)試卷
- 工作效率管理培訓(xùn)課件
- 河南省新鄉(xiāng)市2023-2024學(xué)年八年級上學(xué)期1月期末歷史試題
- 民事證據(jù)規(guī)則 培訓(xùn)課件
- 采購組織內(nèi)部架構(gòu)圖
- 醫(yī)院感染科護士的手術(shù)室感染控制培訓(xùn)
- 大棚項目施工安全措施計劃方案
- 高中語文評價體系的構(gòu)建與實施
- 安徽省合肥市蜀山區(qū)2023-2024學(xué)年七年級上學(xué)期期末生物試卷
- 雷達測距原理與應(yīng)用研究
評論
0/150
提交評論