版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023-2024學(xué)年廣東省增城市第一中學(xué)高考數(shù)學(xué)考前最后一卷預(yù)測(cè)卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù)是定義在上的奇函數(shù),函數(shù)滿足,且時(shí),,則()A.2 B. C.1 D.2.已知集合.為自然數(shù)集,則下列表示不正確的是()A. B. C. D.3.已知角的頂點(diǎn)與坐標(biāo)原點(diǎn)重合,始邊與軸的非負(fù)半軸重合,若點(diǎn)在角的終邊上,則()A. B. C. D.4.設(shè)α,β為兩個(gè)平面,則α∥β的充要條件是A.α內(nèi)有無(wú)數(shù)條直線與β平行B.α內(nèi)有兩條相交直線與β平行C.α,β平行于同一條直線D.α,β垂直于同一平面5.甲乙兩人有三個(gè)不同的學(xué)習(xí)小組,,可以參加,若每人必須參加并且僅能參加一個(gè)學(xué)習(xí)小組,則兩人參加同一個(gè)小組的概率為()A.B.C.D.6.設(shè)復(fù)數(shù)z=,則|z|=()A. B. C. D.7.從5名學(xué)生中選出4名分別參加數(shù)學(xué),物理,化學(xué),生物四科競(jìng)賽,其中甲不能參加生物競(jìng)賽,則不同的參賽方案種數(shù)為A.48 B.72 C.90 D.968.已知實(shí)數(shù),則下列說(shuō)法正確的是()A. B.C. D.9.已知平面向量,滿足且,若對(duì)每一個(gè)確定的向量,記的最小值為,則當(dāng)變化時(shí),的最大值為()A. B. C. D.110.設(shè)分別為雙曲線的左、右焦點(diǎn),過(guò)點(diǎn)作圓的切線,與雙曲線的左、右兩支分別交于點(diǎn),若,則雙曲線漸近線的斜率為()A. B. C. D.11.?dāng)?shù)列滿足:,,,為其前n項(xiàng)和,則()A.0 B.1 C.3 D.412.當(dāng)時(shí),函數(shù)的圖象大致是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知三棱錐中,,,,且二面角的大小為,則三棱錐外接球的表面積為_(kāi)_________.14.設(shè)隨機(jī)變量服從正態(tài)分布,若,則的值是______.15.直線xsinα+y+2=0的傾斜角的取值范圍是________________.16.內(nèi)角,,的對(duì)邊分別為,,,若,則__________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖所示的幾何體中,,四邊形為正方形,四邊形為梯形,,,,為中點(diǎn).(1)證明:;(2)求二面角的余弦值.18.(12分)為了響應(yīng)國(guó)家號(hào)召,促進(jìn)垃圾分類,某校組織了高三年級(jí)學(xué)生參與了“垃圾分類,從我做起”的知識(shí)問(wèn)卷作答隨機(jī)抽出男女各20名同學(xué)的問(wèn)卷進(jìn)行打分,作出如圖所示的莖葉圖,成績(jī)大于70分的為“合格”.(Ⅰ)由以上數(shù)據(jù)繪制成2×2聯(lián)表,是否有95%以上的把握認(rèn)為“性別”與“問(wèn)卷結(jié)果”有關(guān)?男女總計(jì)合格不合格總計(jì)(Ⅱ)從上述樣本中,成績(jī)?cè)?0分以下(不含60分)的男女學(xué)生問(wèn)卷中任意選2個(gè),記來(lái)自男生的個(gè)數(shù)為,求的分布列及數(shù)學(xué)期望.附:0.1000.0500.0100.0012.7063.8416.63510.82819.(12分)已知橢圓的中心在坐標(biāo)原點(diǎn),其短半軸長(zhǎng)為,一個(gè)焦點(diǎn)坐標(biāo)為,點(diǎn)在橢圓上,點(diǎn)在直線上的點(diǎn),且.證明:直線與圓相切;求面積的最小值.20.(12分)已知函數(shù)(,),.(Ⅰ)討論的單調(diào)性;(Ⅱ)若對(duì)任意的,恒成立,求實(shí)數(shù)的取值范圍.21.(12分)某企業(yè)生產(chǎn)一種產(chǎn)品,從流水線上隨機(jī)抽取件產(chǎn)品,統(tǒng)計(jì)其質(zhì)量指標(biāo)值并繪制頻率分布直方圖(如圖1):規(guī)定產(chǎn)品的質(zhì)量指標(biāo)值在的為劣質(zhì)品,在的為優(yōu)等品,在的為特優(yōu)品,銷售時(shí)劣質(zhì)品每件虧損元,優(yōu)等品每件盈利元,特優(yōu)品每件盈利元,以這件產(chǎn)品的質(zhì)量指標(biāo)值位于各區(qū)間的頻率代替產(chǎn)品的質(zhì)量指標(biāo)值位于該區(qū)間的概率.(1)求每件產(chǎn)品的平均銷售利潤(rùn);(2)該企業(yè)主管部門為了解企業(yè)年?duì)I銷費(fèi)用(單位:萬(wàn)元)對(duì)年銷售量(單位:萬(wàn)件)的影響,對(duì)該企業(yè)近年的年?duì)I銷費(fèi)用和年銷售量,數(shù)據(jù)做了初步處理,得到的散點(diǎn)圖(如圖2)及一些統(tǒng)計(jì)量的值.表中,,,.根據(jù)散點(diǎn)圖判斷,可以作為年銷售量(萬(wàn)件)關(guān)于年?duì)I銷費(fèi)用(萬(wàn)元)的回歸方程.①求關(guān)于的回歸方程;②用所求的回歸方程估計(jì)該企業(yè)每年應(yīng)投入多少營(yíng)銷費(fèi),才能使得該企業(yè)的年收益的預(yù)報(bào)值達(dá)到最大?(收益銷售利潤(rùn)營(yíng)銷費(fèi)用,?。└剑簩?duì)于一組數(shù)據(jù),,,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為,.22.(10分)在三棱錐S-ABC中,∠BAC=∠SBA=∠SCA=90°,∠SAB=45°,∠SAC=60°,D為棱AB的中點(diǎn),SA=2(I)證明:SD⊥BC;(II)求直線SD與平面SBC所成角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
說(shuō)明函數(shù)是周期函數(shù),由周期性把自變量的值變小,再結(jié)合奇偶性計(jì)算函數(shù)值.【詳解】由知函數(shù)的周期為4,又是奇函數(shù),,又,∴,∴.故選:D.【點(diǎn)睛】本題考查函數(shù)的奇偶性與周期性,掌握周期性與奇偶性的概念是解題基礎(chǔ).2、D【解析】
集合.為自然數(shù)集,由此能求出結(jié)果.【詳解】解:集合.為自然數(shù)集,在A中,,正確;在B中,,正確;在C中,,正確;在D中,不是的子集,故D錯(cuò)誤.故選:D.【點(diǎn)睛】本題考查命題真假的判斷、元素與集合的關(guān)系、集合與集合的關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.3、D【解析】
由題知,又,代入計(jì)算可得.【詳解】由題知,又.故選:D【點(diǎn)睛】本題主要考查了三角函數(shù)的定義,誘導(dǎo)公式,二倍角公式的應(yīng)用求值.4、B【解析】
本題考查了空間兩個(gè)平面的判定與性質(zhì)及充要條件,滲透直觀想象、邏輯推理素養(yǎng),利用面面平行的判定定理與性質(zhì)定理即可作出判斷.【詳解】由面面平行的判定定理知:內(nèi)兩條相交直線都與平行是的充分條件,由面面平行性質(zhì)定理知,若,則內(nèi)任意一條直線都與平行,所以內(nèi)兩條相交直線都與平行是的必要條件,故選B.【點(diǎn)睛】面面平行的判定問(wèn)題要緊扣面面平行判定定理,最容易犯的錯(cuò)誤為定理記不住,憑主觀臆斷,如:“若,則”此類的錯(cuò)誤.5、A【解析】依題意,基本事件的總數(shù)有種,兩個(gè)人參加同一個(gè)小組,方法數(shù)有種,故概率為.6、D【解析】
先用復(fù)數(shù)的除法運(yùn)算將復(fù)數(shù)化簡(jiǎn),然后用模長(zhǎng)公式求模長(zhǎng).【詳解】解:z====﹣﹣,則|z|====.故選:D.【點(diǎn)睛】本題考查復(fù)數(shù)的基本概念和基本運(yùn)算,屬于基礎(chǔ)題.7、D【解析】因甲不參加生物競(jìng)賽,則安排甲參加另外3場(chǎng)比賽或甲學(xué)生不參加任何比賽①當(dāng)甲參加另外3場(chǎng)比賽時(shí),共有?=72種選擇方案;②當(dāng)甲學(xué)生不參加任何比賽時(shí),共有=24種選擇方案.綜上所述,所有參賽方案有72+24=96種故答案為:96點(diǎn)睛:本題以選擇學(xué)生參加比賽為載體,考查了分類計(jì)數(shù)原理、排列數(shù)與組合數(shù)公式等知識(shí),屬于基礎(chǔ)題.8、C【解析】
利用不等式性質(zhì)可判斷,利用對(duì)數(shù)函數(shù)和指數(shù)函數(shù)的單調(diào)性判斷.【詳解】解:對(duì)于實(shí)數(shù),,不成立對(duì)于不成立.對(duì)于.利用對(duì)數(shù)函數(shù)單調(diào)遞增性質(zhì),即可得出.對(duì)于指數(shù)函數(shù)單調(diào)遞減性質(zhì),因此不成立.故選:.【點(diǎn)睛】利用不等式性質(zhì)比較大?。⒁獠坏仁叫再|(zhì)成立的前提條件.解決此類問(wèn)題除根據(jù)不等式的性質(zhì)求解外,還經(jīng)常采用特殊值驗(yàn)證的方法.9、B【解析】
根據(jù)題意,建立平面直角坐標(biāo)系.令.為中點(diǎn).由即可求得點(diǎn)的軌跡方程.將變形,結(jié)合及平面向量基本定理可知三點(diǎn)共線.由圓切線的性質(zhì)可知的最小值即為到直線的距離最小值,且當(dāng)與圓相切時(shí),有最大值.利用圓的切線性質(zhì)及點(diǎn)到直線距離公式即可求得直線方程,進(jìn)而求得原點(diǎn)到直線的距離,即為的最大值.【詳解】根據(jù)題意,設(shè),則由代入可得即點(diǎn)的軌跡方程為又因?yàn)?變形可得,即,且所以由平面向量基本定理可知三點(diǎn)共線,如下圖所示:所以的最小值即為到直線的距離最小值根據(jù)圓的切線性質(zhì)可知,當(dāng)與圓相切時(shí),有最大值設(shè)切線的方程為,化簡(jiǎn)可得由切線性質(zhì)及點(diǎn)到直線距離公式可得,化簡(jiǎn)可得即所以切線方程為或所以當(dāng)變化時(shí),到直線的最大值為即的最大值為故選:B【點(diǎn)睛】本題考查了平面向量的坐標(biāo)應(yīng)用,平面向量基本定理的應(yīng)用,圓的軌跡方程問(wèn)題,圓的切線性質(zhì)及點(diǎn)到直線距離公式的應(yīng)用,綜合性強(qiáng),屬于難題.10、C【解析】
如圖所示:切點(diǎn)為,連接,作軸于,計(jì)算,,,,根據(jù)勾股定理計(jì)算得到答案.【詳解】如圖所示:切點(diǎn)為,連接,作軸于,,故,在中,,故,故,,根據(jù)勾股定理:,解得.故選:.【點(diǎn)睛】本題考查了雙曲線的漸近線斜率,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.11、D【解析】
用去換中的n,得,相加即可找到數(shù)列的周期,再利用計(jì)算.【詳解】由已知,①,所以②,①+②,得,從而,數(shù)列是以6為周期的周期數(shù)列,且前6項(xiàng)分別為1,2,1,-1,-2,-1,所以,.故選:D.【點(diǎn)睛】本題考查周期數(shù)列的應(yīng)用,在求時(shí),先算出一個(gè)周期的和即,再將表示成即可,本題是一道中檔題.12、B【解析】由,解得,即或,函數(shù)有兩個(gè)零點(diǎn),,不正確,設(shè),則,由,解得或,由,解得:,即是函數(shù)的一個(gè)極大值點(diǎn),不成立,排除,故選B.【方法點(diǎn)晴】本題通過(guò)對(duì)多個(gè)圖象的選擇考察函數(shù)的解析式、定義域、值域、單調(diào)性,導(dǎo)數(shù)的應(yīng)用以及數(shù)學(xué)化歸思想,屬于難題.這類題型也是近年高考常見(jiàn)的命題方向,該題型的特點(diǎn)是綜合性較強(qiáng)較強(qiáng)、考查知識(shí)點(diǎn)較多,但是并不是無(wú)路可循.解答這類題型可以從多方面入手,根據(jù)函數(shù)的定義域、值域、單調(diào)性、奇偶性、特殊點(diǎn)以及時(shí)函數(shù)圖象的變化趨勢(shì),利用排除法,將不合題意選項(xiàng)一一排除.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
設(shè)的中心為T,AB的中點(diǎn)為N,AC中點(diǎn)為M,分別過(guò)M,T做平面ABC,平面PAB的垂線,則垂線的交點(diǎn)為球心O,將的長(zhǎng)度求出或用球半徑表示,再利用余弦定理即可建立方程解得半徑.【詳解】設(shè)的中心為T,AB的中點(diǎn)為N,AC中點(diǎn)為M,分別過(guò)M,T做平面ABC,平面PAB的垂線,則垂線的交點(diǎn)為球心O,如圖所示因?yàn)?,,所以,,,又二面角的大小為,則,,所以,設(shè)外接球半徑為R,則,,在中,由余弦定理,得,即,解得,故三棱錐外接球的表面積.故答案為:.【點(diǎn)睛】本題考查三棱錐外接球的表面積問(wèn)題,解決此類問(wèn)題一定要數(shù)形結(jié)合,建立關(guān)于球的半徑的方程,本題計(jì)算量較大,是一道難題.14、1【解析】
由題得,解不等式得解.【詳解】因?yàn)?,所以,所以c=1.故答案為1【點(diǎn)睛】本題主要考查正態(tài)分布的圖像和性質(zhì),意在考查學(xué)生對(duì)該知識(shí)的理解掌握水平和分析推理能力.15、【解析】因?yàn)閟inα∈[-1,1],所以-sinα∈[-1,1],所以已知直線的斜率范圍為[-1,1],由傾斜角與斜率關(guān)系得傾斜角范圍是.答案:16、【解析】∵,∴,即,∴,∴.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)見(jiàn)解析;(2)【解析】
(1)取的中點(diǎn),結(jié)合三角形中位線和長(zhǎng)度關(guān)系,為平行四邊形,進(jìn)而得到,根據(jù)線面平行判定定理可證得結(jié)論;(2)以,,為,,軸建立空間直角坐標(biāo)系,分別求得兩面的法向量,求得法向量夾角的余弦值;根據(jù)二面角為銳角確定最終二面角的余弦值;【詳解】(1)取的中點(diǎn),連結(jié),因?yàn)闉橹悬c(diǎn),,,所以,,∴為平行四邊形,所以,又因?yàn)?,所以;?)由題及(1)易知,,兩兩垂直,所以以,,為,,軸建立空間直角坐標(biāo)系,則,,,,,,易知面的法向量為設(shè)面的法向量為則可得所以,如圖可知二面角為銳角,所以余弦值為【點(diǎn)睛】本題考查立體幾何中直線與平面平行關(guān)系的證明、空間向量法求解二面角,正確求解法向量是解題的關(guān)鍵,屬于中檔題.18、(Ⅰ)填表見(jiàn)解析,有95%以上的把握認(rèn)為“性別”與“問(wèn)卷結(jié)果”有關(guān);(Ⅱ)分布列見(jiàn)解析,【解析】
(Ⅰ)根據(jù)莖葉圖填寫列聯(lián)表,計(jì)算得到答案.(Ⅱ),計(jì)算,,,得到分布列,再計(jì)算數(shù)學(xué)期望得到答案.【詳解】(Ⅰ)根據(jù)莖葉圖可得:男女總計(jì)合格101626不合格10414總計(jì)202040,故有95%以上的把握認(rèn)為“性別”與“問(wèn)卷結(jié)果””有關(guān).(Ⅱ)從莖葉圖可知,成績(jī)?cè)?0分以下(不含60分)的男女學(xué)生人數(shù)分別是4人和2人,從中任意選2人,基本事件總數(shù)為,,,,012.【點(diǎn)睛】本題考查了獨(dú)立性檢驗(yàn),分布列,數(shù)學(xué)期望,意在考查學(xué)生的綜合應(yīng)用能力.19、證明見(jiàn)解析;1.【解析】
由題意可得橢圓的方程為,由點(diǎn)在直線上,且知的斜率必定存在,分類討論當(dāng)?shù)男甭蕿闀r(shí)和斜率不為時(shí)的情況列出相應(yīng)式子,即可得出直線與圓相切;由知,的面積為【詳解】解:由題意,橢圓的焦點(diǎn)在軸上,且,所以.所以橢圓的方程為.由點(diǎn)在直線上,且知的斜率必定存在,當(dāng)?shù)男甭蕿闀r(shí),,,于是,到的距離為,直線與圓相切.當(dāng)?shù)男甭什粸闀r(shí),設(shè)的方程為,與聯(lián)立得,所以,,從而.而,故的方程為,而在上,故,從而,于是.此時(shí),到的距離為,直線與圓相切.綜上,直線與圓相切.由知,的面積為,上式中,當(dāng)且僅當(dāng)?shù)忍?hào)成立,所以面積的最小值為1.【點(diǎn)睛】本題主要考查直線與橢圓的位置關(guān)系、直線與圓的位置關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解能力、推理論證能力和創(chuàng)新意識(shí),考查化歸與轉(zhuǎn)化思想,屬于難題.20、(Ⅰ)見(jiàn)解析(Ⅱ)【解析】
(Ⅰ)求導(dǎo)得到,討論和兩種情況,得到答案.(Ⅱ)變換得到,設(shè),求,令,故在單調(diào)遞增,存在使得,,計(jì)算得到答案.【詳解】(Ⅰ)(),當(dāng)時(shí),在單調(diào)遞減,在單調(diào)遞增;當(dāng)時(shí),在單調(diào)遞增,在單調(diào)遞減.(Ⅱ)(),即,().令(),則,令,,故在單調(diào)遞增,注意到,,于是存在使得,可知在單調(diào)遞增,在單調(diào)遞減.∴.綜上知,.【點(diǎn)睛】本題考查了函數(shù)的單調(diào)性,恒成立問(wèn)題,意在考查學(xué)生對(duì)于導(dǎo)數(shù)知識(shí)的綜合應(yīng)用能力.21、(1)元.(2)①②萬(wàn)元【解析】
(1)每件產(chǎn)品的銷售利潤(rùn)為,由已知可得的取值,由頻率分布直方圖可得劣質(zhì)品、優(yōu)等品、特優(yōu)品的概率,從而可得的概率分布列,依期望公式計(jì)算出期望即為平均銷售利潤(rùn);(2)①對(duì)取自然對(duì)數(shù),得,令,,,則,這就是線性回歸方程,由所給公式數(shù)據(jù)計(jì)算出系數(shù),得線性回歸方程,從而可求得;②求出收益,可設(shè)換元后用導(dǎo)數(shù)求出最大值.【詳解】解:(1)設(shè)每件產(chǎn)品的銷售利潤(rùn)為,則的可能取值為,,.由頻率分布直方圖可得產(chǎn)品為劣質(zhì)品、優(yōu)等品、特優(yōu)品的概率分別為、、.所以;;.所
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 旅游宣傳冊(cè)印刷服務(wù)合同3篇
- 新媒體賬號(hào)代運(yùn)營(yíng)協(xié)議范本樣文3篇
- 排水招投標(biāo)技巧3篇
- 新版制作合同樣本3篇
- 農(nóng)村紀(jì)念館建設(shè)施工合同
- 船舶維修短期施工合同
- 美食APP廚師長(zhǎng)招聘合同樣本
- 會(huì)議室裝飾改造工程分包合同
- 攝影棚租賃協(xié)議范文
- 教育設(shè)施臨時(shí)設(shè)施施工合同
- 2024年7月國(guó)家開(kāi)放大學(xué)本科《中國(guó)法律史》期末紙質(zhì)考試試題及答案
- 八年級(jí)生物上冊(cè)知識(shí)點(diǎn)總結(jié)(填空版+答案)
- 分布式光伏建設(shè)投資人投標(biāo)方案(技術(shù)方案)
- 果樹(shù)嫁接合同協(xié)議書(shū)
- 2024年四川省自然資源置業(yè)集團(tuán)招聘筆試沖刺題(帶答案解析)
- 幼兒園小班語(yǔ)言課件:《冬天到了》
- 醫(yī)院內(nèi)急診重癥快速反應(yīng)小組建設(shè)專家共識(shí)1
- 2023-2024學(xué)年度九上圓與無(wú)刻度直尺作圖專題研究(劉培松)
- 2023年度四川公需科目:數(shù)字經(jīng)濟(jì)與驅(qū)動(dòng)發(fā)展
- 汽車制造業(yè)的柔性生產(chǎn)與敏捷制造
- 五年級(jí)上冊(cè)小數(shù)乘除練習(xí)300道及答案
評(píng)論
0/150
提交評(píng)論