版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
四川省德陽五中2024屆高考數(shù)學(xué)一模試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數(shù)列滿足,則()A. B. C. D.2.已知雙曲線的一條漸近線方程是,則雙曲線的離心率為()A. B. C. D.3.函數(shù)f(x)=lnA. B. C. D.4.已知函數(shù),若不等式對任意的恒成立,則實數(shù)k的取值范圍是()A. B. C. D.5.已知,,,則a,b,c的大小關(guān)系為()A. B. C. D.6.設(shè)是虛數(shù)單位,若復(fù)數(shù),則()A. B. C. D.7.設(shè)平面與平面相交于直線,直線在平面內(nèi),直線在平面內(nèi),且則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.即不充分不必要條件8.已知,其中是虛數(shù)單位,則對應(yīng)的點的坐標(biāo)為()A. B. C. D.9.函數(shù),,的部分圖象如圖所示,則函數(shù)表達(dá)式為()A. B.C. D.10.設(shè)命題:,,則為A., B.,C., D.,11.拋物線的準(zhǔn)線與軸的交點為點,過點作直線與拋物線交于、兩點,使得是的中點,則直線的斜率為()A. B. C.1 D.12.已知函數(shù),若曲線上始終存在兩點,,使得,且的中點在軸上,則正實數(shù)的取值范圍為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知集合,若,則__________.14.設(shè)為正實數(shù),若則的取值范圍是__________.15.若x5=a0+a1(x-2)+a2(x-2)2+…+a5(x-2)5,則a1=_____,a1+a2+…+a5=____16.若橢圓:的一個焦點坐標(biāo)為,則的長軸長為_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,直線極坐標(biāo)方程為.若直線交曲線于,兩點,求線段的長.18.(12分)在直角坐標(biāo)系中,是過定點且傾斜角為的直線;在極坐標(biāo)系(以坐標(biāo)原點為極點,以軸非負(fù)半軸為極軸,取相同單位長度)中,曲線的極坐標(biāo)方程為.(1)寫出直線的參數(shù)方程,并將曲線的方程化為直角坐標(biāo)方程;(2)若曲線與直線相交于不同的兩點,求的取值范圍.19.(12分)已知函數(shù),函數(shù)().(1)討論的單調(diào)性;(2)證明:當(dāng)時,.(3)證明:當(dāng)時,.20.(12分)已知橢圓()的半焦距為,原點到經(jīng)過兩點,的直線的距離為.(Ⅰ)求橢圓的離心率;(Ⅱ)如圖,是圓的一條直徑,若橢圓經(jīng)過,兩點,求橢圓的方程.21.(12分)已知函數(shù),(1)證明:在區(qū)間單調(diào)遞減;(2)證明:對任意的有.22.(10分)已知函數(shù),(1)求函數(shù)的單調(diào)區(qū)間;(2)當(dāng)時,判斷函數(shù),()有幾個零點,并證明你的結(jié)論;(3)設(shè)函數(shù),若函數(shù)在為增函數(shù),求實數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
利用的前項和求出數(shù)列的通項公式,可計算出,然后利用裂項法可求出的值.【詳解】.當(dāng)時,;當(dāng)時,由,可得,兩式相減,可得,故,因為也適合上式,所以.依題意,,故.故選:C.【點睛】本題考查利用求,同時也考查了裂項求和法,考查計算能力,屬于中等題.2、D【解析】雙曲線的漸近線方程是,所以,即,,即,,故選D.3、C【解析】因為fx=lnx2-4x+4x-23=4、A【解析】
先求出函數(shù)在處的切線方程,在同一直角坐標(biāo)系內(nèi)畫出函數(shù)和的圖象,利用數(shù)形結(jié)合進(jìn)行求解即可.【詳解】當(dāng)時,,所以函數(shù)在處的切線方程為:,令,它與橫軸的交點坐標(biāo)為.在同一直角坐標(biāo)系內(nèi)畫出函數(shù)和的圖象如下圖的所示:利用數(shù)形結(jié)合思想可知:不等式對任意的恒成立,則實數(shù)k的取值范圍是.故選:A【點睛】本題考查了利用數(shù)形結(jié)合思想解決不等式恒成立問題,考查了導(dǎo)數(shù)的應(yīng)用,屬于中檔題.5、D【解析】
與中間值1比較,可用換底公式化為同底數(shù)對數(shù),再比較大?。驹斀狻?,,又,∴,即,∴.故選:D.【點睛】本題考查冪和對數(shù)的大小比較,解題時能化為同底的化為同底數(shù)冪比較,或化為同底數(shù)對數(shù)比較,若是不同類型的數(shù),可借助中間值如0,1等比較.6、A【解析】
結(jié)合復(fù)數(shù)的除法運算和模長公式求解即可【詳解】∵復(fù)數(shù),∴,,則,故選:A.【點睛】本題考查復(fù)數(shù)的除法、模長、平方運算,屬于基礎(chǔ)題7、A【解析】
試題分析:α⊥β,b⊥m又直線a在平面α內(nèi),所以a⊥b,但直線不一定相交,所以“α⊥β”是“a⊥b”的充分不必要條件,故選A.考點:充分條件、必要條件.8、C【解析】
利用復(fù)數(shù)相等的條件求得,,則答案可求.【詳解】由,得,.對應(yīng)的點的坐標(biāo)為,,.故選:.【點睛】本題考查復(fù)數(shù)的代數(shù)表示法及其幾何意義,考查復(fù)數(shù)相等的條件,是基礎(chǔ)題.9、A【解析】
根據(jù)圖像的最值求出,由周期求出,可得,再代入特殊點求出,化簡即得所求.【詳解】由圖像知,,,解得,因為函數(shù)過點,所以,,即,解得,因為,所以,.故選:A【點睛】本題考查根據(jù)圖像求正弦型函數(shù)的解析式,三角函數(shù)誘導(dǎo)公式,屬于基礎(chǔ)題.10、D【解析】
直接利用全稱命題的否定是特稱命題寫出結(jié)果即可.【詳解】因為全稱命題的否定是特稱命題,所以,命題:,,則為:,.故本題答案為D.【點睛】本題考查命題的否定,特稱命題與全稱命題的否定關(guān)系,是基礎(chǔ)題.11、B【解析】
設(shè)點、,設(shè)直線的方程為,由題意得出,將直線的方程與拋物線的方程聯(lián)立,列出韋達(dá)定理,結(jié)合可求得的值,由此可得出直線的斜率.【詳解】由題意可知點,設(shè)點、,設(shè)直線的方程為,由于點是的中點,則,將直線的方程與拋物線的方程聯(lián)立得,整理得,由韋達(dá)定理得,得,,解得,因此,直線的斜率為.故選:B.【點睛】本題考查直線斜率的求解,考查直線與拋物線的綜合問題,涉及韋達(dá)定理設(shè)而不求法的應(yīng)用,考查運算求解能力,屬于中等題.12、D【解析】
根據(jù)中點在軸上,設(shè)出兩點的坐標(biāo),,().對分成三類,利用則,列方程,化簡后求得,利用導(dǎo)數(shù)求得的值域,由此求得的取值范圍.【詳解】根據(jù)條件可知,兩點的橫坐標(biāo)互為相反數(shù),不妨設(shè),,(),若,則,由,所以,即,方程無解;若,顯然不滿足;若,則,由,即,即,因為,所以函數(shù)在上遞減,在上遞增,故在處取得極小值也即是最小值,所以函數(shù)在上的值域為,故.故選D.【點睛】本小題主要考查平面平面向量數(shù)量積為零的坐標(biāo)表示,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,考查利用導(dǎo)數(shù)研究函數(shù)的最小值,考查分析與運算能力,屬于較難的題目.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】
分別代入集合中的元素,求出值,再結(jié)合集合中元素的互異性進(jìn)行取舍可解.【詳解】依題意,分別令,,,由集合的互異性,解得,則.故答案為:【點睛】本題考查集合元素的特性:確定性、互異性、無序性.確定集合中元素,要注意檢驗集合中的元素是否滿足互異性.14、【解析】
根據(jù),可得,進(jìn)而,有,而,令,得到,再用導(dǎo)數(shù)法求解,【詳解】因為,所以,所以,所以,所以,令,,所以,當(dāng)時,,當(dāng)時,所以當(dāng)時,取得最大值,又,所以取值范圍是,故答案為:【點睛】本題主要考查基本不等式的應(yīng)用和導(dǎo)數(shù)法求最值,還考查了運算求解的能力,屬于難題,15、80211【解析】
由,利用二項式定理即可得,分別令、后,作差即可得.【詳解】由題意,則,令,得,令,得,故.故答案為:80,211.【點睛】本題考查了二項式定理的應(yīng)用,屬于中檔題.16、【解析】
由焦點坐標(biāo)得從而可求出,繼而得到橢圓的方程,即可求出長軸長.【詳解】解:因為一個焦點坐標(biāo)為,則,即,解得或由表示的是橢圓,則,所以,則橢圓方程為所以.故答案為:.【點睛】本題考查了橢圓的標(biāo)準(zhǔn)方程,考查了橢圓的幾何意義.本題的易錯點是忽略,從而未對的兩個值進(jìn)行取舍.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、【解析】
由,化簡得,由,所以直線的直角坐標(biāo)方程為,因為曲線的參數(shù)方程為,整理得,直線的方程與曲線的方程聯(lián)立,,整理得,設(shè),則,根據(jù)弦長公式求解即可.【詳解】由,化簡得,又因為,所以直線的直角坐標(biāo)方程為,因為曲線的參數(shù)方程為,消去,整理得,將直線的方程與曲線的方程聯(lián)立,,消去,整理得,設(shè),則,所以,將,代入上式,整理得.【點睛】本題考查參數(shù)方程,極坐標(biāo)方程的應(yīng)用,結(jié)合弦長公式的運用,屬于中檔題.18、(1)(為參數(shù)),;(2)【解析】分析:(1)直線的參數(shù)方程為(為參數(shù)),其中表示之間的距離,而極坐標(biāo)方程可化為,從而的直角方程為.(2)設(shè),則,利用在圓上得到滿足的方程,最后利用韋達(dá)定理就可求出兩條線段的和.詳解:(1)直線的參數(shù)方程為(為參數(shù)).曲線的極坐標(biāo)方程可化為.把,代入曲線的極坐標(biāo)方程可得,即.(2)把直線的參數(shù)方程為(為參數(shù))代入圓的方程可得:.∵曲線與直線相交于不同的兩點,∴,∴,又,∴.又,.∴,∵,∴,∴.∴的取值范圍是.點睛:(1)直線的參數(shù)方程有多種形式,其中一種為(為直線的傾斜角,是參數(shù)),這樣的參數(shù)方程中的參數(shù)有明確的幾何意義,它表示之間的距離.(2)直角坐標(biāo)方程轉(zhuǎn)為極坐標(biāo)方程的關(guān)鍵是利用公式,而極坐標(biāo)方程轉(zhuǎn)化為直角坐標(biāo)方程的關(guān)鍵是利用公式,后者也可以把極坐標(biāo)方程變形盡量產(chǎn)生以便轉(zhuǎn)化.19、(1)答案不唯一,具體見解析(2)證明見解析(3)證明見解析【解析】
(1)求出的定義域,導(dǎo)函數(shù),對參數(shù)、分類討論得到答案.(2)設(shè)函數(shù),求導(dǎo)說明函數(shù)的單調(diào)性,求出函數(shù)的最大值,即可得證.(3)由(1)可知,可得,即又即可得證.【詳解】(1)解:的定義域為,,當(dāng),時,,則在上單調(diào)遞增;當(dāng),時,令,得,令,得,則在上單調(diào)遞減,在上單調(diào)遞增;當(dāng),時,,則在上單調(diào)遞減;當(dāng),時,令,得,令,得,則在上單調(diào)遞增,在上單調(diào)遞減;(2)證明:設(shè)函數(shù),則.因為,所以,,則,從而在上單調(diào)遞減,所以,即.(3)證明:當(dāng)時,.由(1)知,,所以,即.當(dāng)時,,,則,即,又,所以,即.【點睛】本題考查利用導(dǎo)數(shù)研究含參函數(shù)的單調(diào)性,利用導(dǎo)數(shù)證明不等式,屬于難題.20、(Ⅰ);(Ⅱ).【解析】試題分析:(1)依題意,由點到直線的距離公式可得,又有,聯(lián)立可求離心率;(2)由(1)設(shè)橢圓方程,再設(shè)直線方程,與橢圓方程聯(lián)立,求得,令,可得,即得橢圓方程.試題解析:(Ⅰ)過點的直線方程為,則原點到直線的距離,由,得,解得離心率.(Ⅱ)由(1)知,橢圓的方程為.依題意,圓心是線段的中點,且.易知,不與軸垂直.設(shè)其直線方程為,代入(1)得.設(shè),則,.由,得,解得.從而.于是.由,得,解得.故橢圓的方程為.21、(1)答案見解析.(2)答案見解析【解析】
(1)利用復(fù)合函數(shù)求導(dǎo)求出,利用導(dǎo)數(shù)與函數(shù)單調(diào)性之間的關(guān)系即可求解.(2)首先證,令,求導(dǎo)可得單調(diào)遞增,由即可證出;再令,再利用導(dǎo)數(shù)可得單調(diào)遞增,由即可證出.【詳解】(1)顯然時,,故在單調(diào)遞減.(2)首先證,令,則單調(diào)遞增,且,所以再令,所以單調(diào)遞增,即,∴【點睛】本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、利用導(dǎo)數(shù)證明不等式,解題的關(guān)鍵掌握復(fù)合函數(shù)求導(dǎo),屬于難題.22、(1)單調(diào)增區(qū)間,單調(diào)減區(qū)間為,;(2)有2個零點,證明見解析;(3)【解析】
對函數(shù)求導(dǎo),利用導(dǎo)數(shù)的正負(fù)判斷函數(shù)的單調(diào)區(qū)間即可;函數(shù)有2個零點.根據(jù)函數(shù)的零點存在性定理即可證明;記函數(shù),求導(dǎo)后利用單調(diào)性求得,由零點存在性定理及單調(diào)性知存在唯一的,使,求得為分段函數(shù),求導(dǎo)后分情況討論:①當(dāng)時,利用函數(shù)的單調(diào)性將問題轉(zhuǎn)化為的問題;②當(dāng)時,當(dāng)時,在上恒成立,從而求得的取值范圍.【詳解】(1)由題意知,,列表如下:020極小值極大值所以函數(shù)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為,.(2)函數(shù)有2個零點.證明如下:因為時,所以,因為,所以在恒成立,在上單調(diào)遞增,由,,且在上單調(diào)遞增且連續(xù)知,函數(shù)在上僅有一個零點,由(1)可得時,,即,故時,,所以,由得,平方得,所以,因為,所以在上恒成立,所以函數(shù)在上單調(diào)遞減,因為,所以,由,,且在上單調(diào)遞減且連續(xù)得在上僅有一個零點,綜上可知:函數(shù)有2個零點.(3)記函數(shù),下面考察的符號.求導(dǎo)得.當(dāng)時恒成立.當(dāng)時,因為,所以.∴在上恒成立,故在上單調(diào)遞減.∵,∴,又因為在上
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 墊塊模具課程設(shè)計
- 2024年度土地權(quán)益分割及債務(wù)分擔(dān)協(xié)議書3篇
- 電氣期末課程設(shè)計
- 環(huán)創(chuàng)課程設(shè)計
- 2024年度預(yù)制橋梁工程風(fēng)險評估合同范本大全3篇
- 2024年數(shù)字經(jīng)濟(jì)項目投資保證金合同范本3篇
- 2024年度預(yù)制裝配式建筑混凝土構(gòu)件供應(yīng)合同范本3篇
- 2022-2023學(xué)年浙江溫州蒼南縣五年級下冊語文期末試卷及答案
- 2021-2022學(xué)年廣東省廣州市白云區(qū)小學(xué)三年級下冊語文期末試題及答案
- 2022-2023學(xué)年江蘇省鹽城市鹽都區(qū)二年級下學(xué)期數(shù)學(xué)期末試題及答案
- 大學(xué)生寒假安全教育主題班會
- 杏醬生產(chǎn)工藝
- 社會團(tuán)體主要負(fù)責(zé)人登記表
- 難免壓力性損傷申報表
- 四線三格word模板
- 國家各部委專項資金申報種類
- 年會抽獎券可編輯模板
- 中醫(yī)醫(yī)案學(xué)三醫(yī)案的類型讀案方法
- 制造業(yè)信息化管理系統(tǒng)架構(gòu)規(guī)劃
- 化學(xué)錨栓計算
- 測井曲線及代碼
評論
0/150
提交評論