九江市重點(diǎn)中學(xué)2024年中考押題數(shù)學(xué)預(yù)測卷含解析_第1頁
九江市重點(diǎn)中學(xué)2024年中考押題數(shù)學(xué)預(yù)測卷含解析_第2頁
九江市重點(diǎn)中學(xué)2024年中考押題數(shù)學(xué)預(yù)測卷含解析_第3頁
九江市重點(diǎn)中學(xué)2024年中考押題數(shù)學(xué)預(yù)測卷含解析_第4頁
九江市重點(diǎn)中學(xué)2024年中考押題數(shù)學(xué)預(yù)測卷含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

九江市重點(diǎn)中學(xué)2024年中考押題數(shù)學(xué)預(yù)測卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖,E為平行四邊形ABCD的邊AB延長線上的一點(diǎn),且BE:AB=2:3,△BEF的面積為4,則平行四邊形ABCD的面積為()

A.30 B.27 C.14 D.322.下列二次根式中,最簡二次根式是()A. B. C. D.3.方程有兩個(gè)實(shí)數(shù)根,則k的取值范圍是().A.k≥1 B.k≤1 C.k>1 D.k<14.如圖,將△ABC沿著點(diǎn)B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距離為6,則陰影部分面積為()A.42 B.96 C.84 D.485.據(jù)浙江省統(tǒng)計(jì)局發(fā)布的數(shù)據(jù)顯示,2017年末,全省常住人口為5657萬人數(shù)據(jù)“5657萬”用科學(xué)記數(shù)法表示為A. B. C. D.6.如圖,AB是定長線段,圓心O是AB的中點(diǎn),AE、BF為切線,E、F為切點(diǎn),滿足AE=BF,在上取動(dòng)點(diǎn)G,國點(diǎn)G作切線交AE、BF的延長線于點(diǎn)D、C,當(dāng)點(diǎn)G運(yùn)動(dòng)時(shí),設(shè)AD=y,BC=x,則y與x所滿足的函數(shù)關(guān)系式為()A.正比例函數(shù)y=kx(k為常數(shù),k≠0,x>0)B.一次函數(shù)y=kx+b(k,b為常數(shù),kb≠0,x>0)C.反比例函數(shù)y=(k為常數(shù),k≠0,x>0)D.二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),a≠0,x>0)7.不等式組的解集是()A.x>﹣1 B.x≤2 C.﹣1<x<2 D.﹣1<x≤28.下列計(jì)算結(jié)果正確的是()A. B.C. D.9.如圖,在平面直角坐標(biāo)中,正方形ABCD與正方形BEFG是以原點(diǎn)O為位似中心的位似圖形,且相似比為,點(diǎn)A,B,E在x軸上,若正方形BEFG的邊長為6,則C點(diǎn)坐標(biāo)為()A.(3,2) B.(3,1) C.(2,2) D.(4,2)10.已知一次函數(shù)y=kx+b的圖象如圖,那么正比例函數(shù)y=kx和反比例函數(shù)y=在同一坐標(biāo)系中的圖象的形狀大致是()A. B.C. D.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.如圖,在平面直角坐標(biāo)系中,矩形活動(dòng)框架ABCD的長AB為2,寬AD為,其中邊AB在x軸上,且原點(diǎn)O為AB的中點(diǎn),固定點(diǎn)A、B,把這個(gè)矩形活動(dòng)框架沿箭頭方向推,使D落在y軸的正半軸上點(diǎn)D′處,點(diǎn)C的對應(yīng)點(diǎn)C′的坐標(biāo)為______.12.如圖,在平面直角坐標(biāo)系中,矩形OACB的頂點(diǎn)O是坐標(biāo)原點(diǎn),頂點(diǎn)A、B分別在x軸、y軸的正半軸上,OA=3,OB=4,D為邊OB的中點(diǎn).若E為邊OA上的一個(gè)動(dòng)點(diǎn),當(dāng)△CDE的周長最小時(shí),則點(diǎn)E的坐標(biāo)____________.13.王英同學(xué)從A地沿北偏西60°方向走100米到B地,再從B地向正南方向走200米到C地,此時(shí)王英同學(xué)離A地的距離是_____米.14.計(jì)算:=____.15.如圖,△ABC中,DE垂直平分AC交AB于E,∠A=30°,∠ACB=80°,則∠BCE=_____°.16.在△ABC中,∠C=90°,AC=3,BC=4,點(diǎn)D,E,F分別是邊AB,AC,BC的中點(diǎn),則三、解答題(共8題,共72分)17.(8分)某種型號油電混合動(dòng)力汽車,從A地到B地燃油行駛需純?nèi)加唾M(fèi)用76元,從A地到B地用電行駛需純用電費(fèi)用26元,已知每行駛1千米,純?nèi)加唾M(fèi)用比純用電費(fèi)用多0.5元.求每行駛1千米純用電的費(fèi)用;若要使從A地到B地油電混合行駛所需的油、電費(fèi)用合計(jì)不超過39元,則至少需用電行駛多少千米?18.(8分)如圖,AB是⊙O的直徑,BE是弦,點(diǎn)D是弦BE上一點(diǎn),連接OD并延長交⊙O于點(diǎn)C,連接BC,過點(diǎn)D作FD⊥OC交⊙O的切線EF于點(diǎn)F.(1)求證:∠CBE=∠F;(2)若⊙O的半徑是2,點(diǎn)D是OC中點(diǎn),∠CBE=15°,求線段EF的長.19.(8分)如圖,在五邊形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.求證:△ABC≌△AED;當(dāng)∠B=140°時(shí),求∠BAE的度數(shù).20.(8分)如圖,網(wǎng)格的每個(gè)小正方形邊長均為1,每個(gè)小正方形的頂點(diǎn)稱為格點(diǎn).已知和的頂點(diǎn)都在格點(diǎn)上,線段的中點(diǎn)為.(1)以點(diǎn)為旋轉(zhuǎn)中心,分別畫出把順時(shí)針旋轉(zhuǎn),后的,;(2)利用(1)變換后所形成的圖案,解答下列問題:①直接寫出四邊形,四邊形的形狀;②直接寫出的值;③設(shè)的三邊,,,請證明勾股定理.21.(8分)如圖,矩形OABC的邊OA、OC分別在x軸、y軸上,點(diǎn)B的坐標(biāo)為(m,n)(m<0,n>0),E點(diǎn)在邊BC上,F(xiàn)點(diǎn)在邊OA上.將矩形OABC沿EF折疊,點(diǎn)B正好與點(diǎn)O重合,雙曲線y=k(1)若m=-8,n=4,直接寫出E、F的坐標(biāo);(2)若直線EF的解析式為y=3(3)若雙曲線y=k22.(10分)如圖,在航線l的兩側(cè)分別有觀測點(diǎn)A和B,點(diǎn)A到航線的距離為2km,點(diǎn)B位于點(diǎn)A北偏東60°方向且與A相距10km.現(xiàn)有一艘輪船從位于點(diǎn)B南偏西76°方向的C處,正沿該航線自西向東航行,5分鐘后該輪船行至點(diǎn)A的正北方向的D處.(1)求觀測點(diǎn)B到航線的距離;(2)求該輪船航行的速度(結(jié)果精確到0.1km/h).(參考數(shù)據(jù):≈1.73,sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)23.(12分)如圖,已知A(﹣4,),B(﹣1,m)是一次函數(shù)y=kx+b與反比例函數(shù)y=圖象的兩個(gè)交點(diǎn),AC⊥x軸于點(diǎn)C,BD⊥y軸于點(diǎn)D.(1)求m的值及一次函數(shù)解析式;(2)P是線段AB上的一點(diǎn),連接PC、PD,若△PCA和△PDB面積相等,求點(diǎn)P坐標(biāo).24.如圖,已知反比例函數(shù)y=(x>0)的圖象與一次函數(shù)y=﹣x+4的圖象交于A和B(6,n)兩點(diǎn).求k和n的值;若點(diǎn)C(x,y)也在反比例函數(shù)y=(x>0)的圖象上,求當(dāng)2≤x≤6時(shí),函數(shù)值y的取值范圍.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】∵四邊形ABCD是平行四邊形,∴AB//CD,AB=CD,AD//BC,∴△BEF∽△CDF,△BEF∽△AED,∴,∵BE:AB=2:3,AE=AB+BE,∴BE:CD=2:3,BE:AE=2:5,∴,∵S△BEF=4,∴S△CDF=9,S△AED=25,∴S四邊形ABFD=S△AED-S△BEF=25-4=21,∴S平行四邊形ABCD=S△CDF+S四邊形ABFD=9+21=30,故選A.【點(diǎn)睛】本題考查了平行四邊形的性質(zhì),相似三角形的判定與性質(zhì)等,熟記相似三角形的面積等于相似比的平方是解題的關(guān)鍵.2、C【解析】

檢查最簡二次根式的兩個(gè)條件是否同時(shí)滿足,同時(shí)滿足的就是最簡二次根式,否則就不是.【詳解】A.被開方數(shù)含能開得盡方的因數(shù)或因式,故A不符合題意,B.被開方數(shù)含能開得盡方的因數(shù)或因式,故B不符合題意,C.被開方數(shù)不含分母;被開方數(shù)不含能開得盡方的因數(shù)或因式,故C符合題意,D.被開方數(shù)含分母,故D不符合題意.故選C.【點(diǎn)睛】本題考查最簡二次根式的定義,最簡二次根式必須滿足兩個(gè)條件:被開方數(shù)不含分母;被開方數(shù)不含能開得盡方的因數(shù)或因式.3、D【解析】當(dāng)k=1時(shí),原方程不成立,故k≠1,當(dāng)k≠1時(shí),方程為一元二次方程.∵此方程有兩個(gè)實(shí)數(shù)根,∴,解得:k≤1.綜上k的取值范圍是k<1.故選D.4、D【解析】

由平移的性質(zhì)知,BE=6,DE=AB=10,∴OE=DE﹣DO=10﹣4=6,∴S四邊形ODFC=S梯形ABEO=(AB+OE)?BE=(10+6)×6=1.故選D.【點(diǎn)睛】本題考查平移的性質(zhì),平移前后兩個(gè)圖形大小,形狀完全相同,圖形上的每個(gè)點(diǎn)都平移了相同的距離,對應(yīng)點(diǎn)之間的距離就是平移的距離.5、C【解析】

科學(xué)記數(shù)法的表示形式為的形式,其中,n為整數(shù)確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同當(dāng)原數(shù)絕對值時(shí),n是正數(shù);當(dāng)原數(shù)的絕對值時(shí),n是負(fù)數(shù).【詳解】解:5657萬用科學(xué)記數(shù)法表示為,

故選:C.【點(diǎn)睛】此題考查科學(xué)記數(shù)法的表示方法科學(xué)記數(shù)法的表示形式為的形式,其中,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.6、C【解析】

延長AD,BC交于點(diǎn)Q,連接OE,OF,OD,OC,OQ,由AE與BF為圓的切線,利用切線的性質(zhì)得到AE與EO垂直,BF與OF垂直,由AE=BF,OE=OF,利用HL得到直角三角形AOE與直角BOF全等,利用全等三角形的對應(yīng)角相等得到∠A=∠B,利用等角對等邊可得出三角形QAB為等腰三角形,由O為底邊AB的中點(diǎn),利用三線合一得到QO垂直于AB,得到一對直角相等,再由∠FQO與∠OQB為公共角,利用兩對對應(yīng)角相等的兩三角形相似得到三角形FQO與三角形OQB相似,同理得到三角形EQO與三角形OAQ相似,由相似三角形的對應(yīng)角相等得到∠QOE=∠QOF=∠A=∠B,再由切線長定理得到OD與OC分別為∠EOG與∠FOG的平分線,得到∠DOC為∠EOF的一半,即∠DOC=∠A=∠B,又∠GCO=∠FCO,得到三角形DOC與三角形OBC相似,同理三角形DOC與三角形DAO相似,進(jìn)而確定出三角形OBC與三角形DAO相似,由相似得比例,將AD=x,BC=y代入,并將AO與OB換為AB的一半,可得出x與y的乘積為定值,即y與x成反比例函數(shù),即可得到正確的選項(xiàng).【詳解】延長AD,BC交于點(diǎn)Q,連接OE,OF,OD,OC,OQ,∵AE,BF為圓O的切線,∴OE⊥AE,OF⊥FB,∴∠AEO=∠BFO=90°,在Rt△AEO和Rt△BFO中,∵,∴Rt△AEO≌Rt△BFO(HL),∴∠A=∠B,∴△QAB為等腰三角形,又∵O為AB的中點(diǎn),即AO=BO,∴QO⊥AB,∴∠QOB=∠QFO=90°,又∵∠OQF=∠BQO,∴△QOF∽△QBO,∴∠B=∠QOF,同理可以得到∠A=∠QOE,∴∠QOF=∠QOE,根據(jù)切線長定理得:OD平分∠EOG,OC平分∠GOF,∴∠DOC=∠EOF=∠A=∠B,又∵∠GCO=∠FCO,∴△DOC∽△OBC,同理可以得到△DOC∽△DAO,∴△DAO∽△OBC,∴,∴AD?BC=AO?OB=AB2,即xy=AB2為定值,設(shè)k=AB2,得到y(tǒng)=,則y與x滿足的函數(shù)關(guān)系式為反比例函數(shù)y=(k為常數(shù),k≠0,x>0).故選C.【點(diǎn)睛】本題屬于圓的綜合題,涉及的知識有:相似三角形的判定與性質(zhì),切線長定理,直角三角形全等的判定與性質(zhì),反比例函數(shù)的性質(zhì),以及等腰三角形的性質(zhì),做此題是注意靈活運(yùn)用所學(xué)知識.7、D【解析】由﹣x<1得,∴x>﹣1,由3x﹣5≤1得,3x≤6,∴x≤2,∴不等式組的解集為﹣1<x≤2,故選D8、C【解析】

利用冪的乘方、同底數(shù)冪的乘法、合并同類項(xiàng)及零指數(shù)冪的定義分別計(jì)算后即可確定正確的選項(xiàng).【詳解】A、原式,故錯(cuò)誤;B、原式,故錯(cuò)誤;C、利用合并同類項(xiàng)的知識可知該選項(xiàng)正確;D、,,所以原式無意義,錯(cuò)誤,故選C.【點(diǎn)睛】本題考查了冪的運(yùn)算性質(zhì)及特殊角的三角函數(shù)值的知識,解題的關(guān)鍵是能夠利用有關(guān)法則進(jìn)行正確的運(yùn)算,難度不大.9、A【解析】

∵正方形ABCD與正方形BEFG是以原點(diǎn)O為位似中心的位似圖形,且相似比為,∴=,∵BG=6,∴AD=BC=2,∵AD∥BG,∴△OAD∽△OBG,∴=,∴=,解得:OA=1,∴OB=3,∴C點(diǎn)坐標(biāo)為:(3,2),故選A.10、C【解析】試題分析:如圖所示,由一次函數(shù)y=kx+b的圖象經(jīng)過第一、三、四象限,可得k>1,b<1.因此可知正比例函數(shù)y=kx的圖象經(jīng)過第一、三象限,反比例函數(shù)y=的圖象經(jīng)過第二、四象限.綜上所述,符合條件的圖象是C選項(xiàng).故選C.考點(diǎn):1、反比例函數(shù)的圖象;2、一次函數(shù)的圖象;3、一次函數(shù)圖象與系數(shù)的關(guān)系二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、(2,1)【解析】

由已知條件得到AD′=AD=,AO=AB=1,根據(jù)勾股定理得到OD′==1,于是得到結(jié)論.【詳解】解:∵AD′=AD=,AO=AB=1,∴OD′==1,∵C′D′=2,C′D′∥AB,

∴C′(2,1),

故答案為:(2,1)【點(diǎn)睛】本題考查了矩形的性質(zhì),坐標(biāo)與圖形的性質(zhì),勾股定理,正確的識別圖形是解題的關(guān)鍵.12、(1,0)【解析】分析:由于C、D是定點(diǎn),則CD是定值,如果的周長最小,即有最小值.為此,作點(diǎn)D關(guān)于x軸的對稱點(diǎn)D′,當(dāng)點(diǎn)E在線段CD′上時(shí)的周長最?。斀猓喝鐖D,作點(diǎn)D關(guān)于x軸的對稱點(diǎn)D′,連接CD′與x軸交于點(diǎn)E,連接DE.若在邊OA上任取點(diǎn)E′與點(diǎn)E不重合,連接CE′、DE′、D′E′由DE′+CE′=D′E′+CE′>CD′=D′E+CE=DE+CE,可知△CDE的周長最小,∵在矩形OACB中,OA=3,OB=4,D為OB的中點(diǎn),∴BC=3,D′O=DO=2,D′B=6,∵OE∥BC,∴Rt△D′OE∽Rt△D′BC,有∴OE=1,∴點(diǎn)E的坐標(biāo)為(1,0).故答案為:(1,0).點(diǎn)睛:考查軸對稱-最短路線問題,坐標(biāo)與圖形性質(zhì),相似三角形的判定與性質(zhì)等,找出點(diǎn)E的位置是解題的關(guān)鍵.13、100【解析】先在直角△ABE中利用三角函數(shù)求出BE和AE,然后在直角△ACF中,利用勾股定理求出AC.解:如圖,作AE⊥BC于點(diǎn)E.∵∠EAB=30°,AB=100,∴BE=50,AE=50.∵BC=200,∴CE=1.在Rt△ACE中,根據(jù)勾股定理得:AC=100.即此時(shí)王英同學(xué)離A地的距離是100米.故答案為100.解一般三角形的問題一般可以轉(zhuǎn)化為解直角三角形的問題,解決的方法就是作高線.14、1【解析】

根據(jù)算術(shù)平方根的定義進(jìn)行化簡,再根據(jù)算術(shù)平方根的定義求解即可.【詳解】解:∵12=21,

∴=1,

故答案為:1.【點(diǎn)睛】本題考查了算術(shù)平方根的定義,先把化簡是解題的關(guān)鍵.15、1【解析】

根據(jù)△ABC中DE垂直平分AC,可求出AE=CE,再根據(jù)等腰三角形的性質(zhì)求出∠ACE=∠A=30°,再根據(jù)∠ACB=80°即可解答.【詳解】∵DE垂直平分AC,∠A=30°,∴AE=CE,∠ACE=∠A=30°,∵∠ACB=80°,∴∠BCE=80°-30°=1°.故答案為:1.16、6【解析】

首先利用勾股定理求得斜邊長,然后利用三角形中位線定理求得答案即可.【詳解】解:∵Rt△ABC中,∠C=90°,AC=3,BC=4,∴AB=AC2+B∵點(diǎn)D、E、F分別是邊AB、AC、BC的中點(diǎn),∴DE=12BC,DF=12AC,EF=∴C△DEF=DE+DF+EF=12BC+12AC+12AB=1故答案為:6.【點(diǎn)睛】本題考查了勾股定理和三角形中位線定理.三、解答題(共8題,共72分)17、(1)每行駛1千米純用電的費(fèi)用為0.26元.(2)至少需用電行駛74千米.【解析】

(1)根據(jù)某種型號油電混合動(dòng)力汽車,從A地到B地燃油行駛純?nèi)加唾M(fèi)用76元,從A地到B地用電行駛純電費(fèi)用26元,已知每行駛1千米,純?nèi)加唾M(fèi)用比純用電費(fèi)用多0.5元,可以列出相應(yīng)的分式方程,然后解分式方程即可解答本題;(2)根據(jù)(1)中用電每千米的費(fèi)用和本問中的信息可以列出相應(yīng)的不等式,解不等式即可解答本題.【詳解】(1)設(shè)每行駛1千米純用電的費(fèi)用為x元,根據(jù)題意得:=解得:x=0.26經(jīng)檢驗(yàn),x=0.26是原分式方程的解,答:每行駛1千米純用電的費(fèi)用為0.26元;(2)從A地到B地油電混合行駛,用電行駛y千米,得:0.26y+(﹣y)×(0.26+0.50)≤39解得:y≥74,即至少用電行駛74千米.18、(1)詳見解析;(1)【解析】

(1)連接OE交DF于點(diǎn)H,由切線的性質(zhì)得出∠F+∠EHF=90°,由FD⊥OC得出∠DOH+∠DHO=90°,依據(jù)對頂角的定義得出∠EHF=∠DHO,從而求得∠F=∠DOH,依據(jù)∠CBE=∠DOH,從而即可得證;(1)依據(jù)圓周角定理及其推論得出∠F=∠COE=1∠CBE=30°,求出OD的值,利用銳角三角函數(shù)的定義求出OH的值,進(jìn)一步求得HE的值,利用銳角三角函數(shù)的定義進(jìn)一步求得EF的值.【詳解】(1)證明:連接OE交DF于點(diǎn)H,∵EF是⊙O的切線,OE是⊙O的半徑,∴OE⊥EF.∴∠F+∠EHF=90°.∵FD⊥OC,∴∠DOH+∠DHO=90°.∵∠EHF=∠DHO,∴∠F=∠DOH.∵∠CBE=∠DOH,∴(1)解:∵∠CBE=15°,∴∠F=∠COE=1∠CBE=30°.∵⊙O的半徑是,點(diǎn)D是OC中點(diǎn),∴.在Rt△ODH中,cos∠DOH=,∴OH=1.∴.在Rt△FEH中,∴【點(diǎn)睛】本題主要考查切線的性質(zhì)及直角三角形的性質(zhì)、圓周角定理及三角函數(shù)的應(yīng)用,掌握圓周角定理和切線的性質(zhì)是解題的關(guān)鍵.19、(1)詳見解析;(2)80°.【分析】(1)根據(jù)∠ACD=∠ADC,∠BCD=∠EDC=90°,可得∠ACB=∠ADE,進(jìn)而運(yùn)用SAS即可判定全等三角形;(2)根據(jù)全等三角形對應(yīng)角相等,運(yùn)用五邊形內(nèi)角和,即可得到∠BAE的度數(shù).【解析】

(1)根據(jù)∠ACD=∠ADC,∠BCD=∠EDC=90°,可得∠ACB=∠ADE,進(jìn)而運(yùn)用SAS即可判定全等三角形;(2)根據(jù)全等三角形對應(yīng)角相等,運(yùn)用五邊形內(nèi)角和,即可得到∠BAE的度數(shù).【詳解】證明:(1)∵AC=AD,∴∠ACD=∠ADC,又∵∠BCD=∠EDC=90°,∴∠ACB=∠ADE,在△ABC和△AED中,,∴△ABC≌△AED(SAS);解:(2)當(dāng)∠B=140°時(shí),∠E=140°,又∵∠BCD=∠EDC=90°,∴五邊形ABCDE中,∠BAE=540°﹣140°×2﹣90°×2=80°.【點(diǎn)睛】考點(diǎn):全等三角形的判定與性質(zhì).20、(1)見解析;(2)①正方形;②;③見解析.【解析】

(1)根據(jù)旋轉(zhuǎn)作圖的方法進(jìn)行作圖即可;(2)①根據(jù)旋轉(zhuǎn)的性質(zhì)可證AC=BC1=B1C2=B2C3,從而證出四邊形CC1C2C3是菱形,再根據(jù)有一個(gè)角是直角的菱形是正方形即可作出判斷,同理可判斷四邊形ABB1B2是正方形;②根據(jù)相似圖形的面積之比等相似比的平方即可得到結(jié)果;③用兩種不同的方法計(jì)算大正方形的面積化簡即可得到勾股定理.【詳解】(1)如圖,(2)①四邊形CC1C2C3和四邊形ABB1B2是正方形.理由如下:∵△ABC≌△BB1C1,∴AC=BC1,BC==B1C1,AB=BB1.再根據(jù)旋轉(zhuǎn)的性質(zhì)可得:BC1=B1C2=B2C3,B2C1=B2C2=AC3,BB1=B1B2=AB2.∴CC1=C1C2=C2C3=CC3AB=BB1=B1B2=AB2∴四邊形CC1C2C3和四邊形ABB1B2是菱形.∵∠C=∠ABB1=90°,∴四邊形CC1C2C3和四邊形ABB1B2是正方形.②∵四邊形CC1C2C3和四邊形ABB1B2是正方形,∴四邊形CC1C2C3∽四邊形ABB1B2.∴=∵AB=,CC1=,∴==.③四邊形CC1C2C3的面積==,四邊形CC1C2C3的面積=4△ABC的面積+四邊形ABB1B2的面積=4+=∴=,化簡得:=.【點(diǎn)睛】本題考查了旋轉(zhuǎn)作圖和旋轉(zhuǎn)的性質(zhì),正方形的判定和性質(zhì),勾股定理,掌握相關(guān)知識是解題的關(guān)鍵.21、(1)E(-3,4)、F(-5,0);(2)-334【解析】

(1)連接OE,BF,根據(jù)題意可知:BC=OA=8,BA=OC=4,設(shè)EC=x,則BE=OE=8-x,根據(jù)勾股定理可得:OC2+CE2(2)連接BF、OE,連接BO交EF于G由翻折可知:GO=GB,BE=OE,證明△BGE≌△OGF,證明四邊形OEBF為菱形,令y=0,則3x+3=0,解得x=-3,根據(jù)菱形的性質(zhì)得OF=OE=BE=BF=3令y=n,則3x+3=n,解得x=n-33(3)設(shè)EB=EO=x,則CE=-m-x,在Rt△COE中,根據(jù)勾股定理得到(-m-x)2+n2=x2,解得x=-m2+n22m,求出點(diǎn)E(m2-n22m?,?n)、F(即可求出tan∠EFO=-m【詳解】解:(1)如圖:連接OE,BF,E(-3,4)、F(-5,0)(2)連接BF、OE,連接BO交EF于G由翻折可知:GO=GB,BE=OE可證:△BGE≌△OGF(ASA)∴BE=OF∴四邊形OEBF為菱形令y=0,則3x+3=0,解得x=-3令y=n,則3x+3=n,解得x=n-3在Rt△COE中,(-n-3解得n=3∴E(-3∴k=-(3)設(shè)EB=EO=x,則CE=-m-x,在Rt△COE中,(-m-x)2+n2=x2,解得x=-∴E(m2-n∴EF的中點(diǎn)為(m2將E(m2-n22mn(m2-n∴tan∠EFO=-【點(diǎn)睛】考查矩形的折疊與性質(zhì),勾股定理,一次函數(shù)的圖象與性質(zhì),待定系數(shù)法求反比例函數(shù)解析式,銳角三角函數(shù)等,綜合性比較強(qiáng),難度較大.22、(1)觀測點(diǎn)到航線的距離為3km(2)該輪船航行的速度約為40.6km/h【解析】試題分析:(1)設(shè)AB與l交于點(diǎn)O,利用∠DAO=60°,利用∠DAO的余弦求出OA長,從而求得OB長,繼而求得BE長即可;(2)先計(jì)算出DE=EF+DF=求出DE=5,再由進(jìn)而由tan∠CBE=求出EC,即可求出CD的長,進(jìn)而求出航行速度.試題解析:(1)設(shè)AB與l交于點(diǎn)O,在Rt△AOD中,∵∠OAD=60°,AD=2(km),∴OA

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論