




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
吉林市第一中學(xué)2024年高考仿真卷數(shù)學(xué)試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知實數(shù),滿足,則的最大值等于()A.2 B. C.4 D.82.在三棱錐中,,且分別是棱,的中點,下面四個結(jié)論:①;②平面;③三棱錐的體積的最大值為;④與一定不垂直.其中所有正確命題的序號是()A.①②③ B.②③④ C.①④ D.①②④3.由曲線圍成的封閉圖形的面積為()A. B. C. D.4.正方體,是棱的中點,在任意兩個中點的連線中,與平面平行的直線有幾條()A.36 B.21 C.12 D.65.已知四棱錐中,平面,底面是邊長為2的正方形,,為的中點,則異面直線與所成角的余弦值為()A. B. C. D.6.下列命題為真命題的個數(shù)是()(其中,為無理數(shù))①;②;③.A.0 B.1 C.2 D.37.執(zhí)行如下的程序框圖,則輸出的是()A. B.C. D.8.已知a,b∈R,,則()A.b=3a B.b=6a C.b=9a D.b=12a9.一個正四棱錐形骨架的底邊邊長為,高為,有一個球的表面與這個正四棱錐的每個邊都相切,則該球的表面積為()A. B. C. D.10.如圖,已知直線與拋物線相交于A,B兩點,且A、B兩點在拋物線準(zhǔn)線上的投影分別是M,N,若,則的值是()A. B. C. D.11.定義,已知函數(shù),,則函數(shù)的最小值為()A. B. C. D.12.若雙曲線的離心率,則該雙曲線的焦點到其漸近線的距離為()A. B.2 C. D.1二、填空題:本題共4小題,每小題5分,共20分。13.已知集合,其中,.且,則集合中所有元素的和為_________.14.已知實數(shù),滿足約束條件,則的最大值是__________.15.如果復(fù)數(shù)滿足,那么______(為虛數(shù)單位).16.已知,則滿足的的取值范圍為_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,四邊形是直角梯形,底面,是的中點.(1).求證:平面平面;(2).若二面角的余弦值為,求直線與平面所成角的正弦值.18.(12分)已知矩陣,,若矩陣,求矩陣的逆矩陣.19.(12分)設(shè)(1)證明:當(dāng)時,;(2)當(dāng)時,求整數(shù)的最大值.(參考數(shù)據(jù):,)20.(12分)已知橢圓的右焦點為,直線被稱作為橢圓的一條準(zhǔn)線,點在橢圓上(異于橢圓左、右頂點),過點作直線與橢圓相切,且與直線相交于點.(1)求證:.(2)若點在軸的上方,當(dāng)?shù)拿娣e最小時,求直線的斜率.附:多項式因式分解公式:21.(12分)如圖,在正四棱柱中,已知,.(1)求異面直線與直線所成的角的大小;(2)求點到平面的距離.22.(10分)數(shù)列的前項和為,且.數(shù)列滿足,其前項和為.(1)求數(shù)列與的通項公式;(2)設(shè),求數(shù)列的前項和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
畫出可行域,計算出原點到可行域上的點的最大距離,由此求得的最大值.【詳解】畫出可行域如下圖所示,其中,由于,,所以,所以原點到可行域上的點的最大距離為.所以的最大值為.故選:D【點睛】本小題主要考查根據(jù)可行域求非線性目標(biāo)函數(shù)的最值,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.2、D【解析】
①通過證明平面,證得;②通過證明,證得平面;③求得三棱錐體積的最大值,由此判斷③的正確性;④利用反證法證得與一定不垂直.【詳解】設(shè)的中點為,連接,則,,又,所以平面,所以,故①正確;因為,所以平面,故②正確;當(dāng)平面與平面垂直時,最大,最大值為,故③錯誤;若與垂直,又因為,所以平面,所以,又,所以平面,所以,因為,所以顯然與不可能垂直,故④正確.故選:D【點睛】本小題主要考查空間線線垂直、線面平行、幾何體體積有關(guān)命題真假性的判斷,考查空間想象能力和邏輯推理能力,屬于中檔題.3、A【解析】
先計算出兩個圖像的交點分別為,再利用定積分算兩個圖形圍成的面積.【詳解】封閉圖形的面積為.選A.【點睛】本題考察定積分的應(yīng)用,屬于基礎(chǔ)題.解題時注意積分區(qū)間和被積函數(shù)的選取.4、B【解析】
先找到與平面平行的平面,利用面面平行的定義即可得到.【詳解】考慮與平面平行的平面,平面,平面,共有,故選:B.【點睛】本題考查線面平行的判定定理以及面面平行的定義,涉及到了簡單的組合問題,是一中檔題.5、B【解析】
由題意建立空間直角坐標(biāo)系,表示出各點坐標(biāo)后,利用即可得解.【詳解】平面,底面是邊長為2的正方形,如圖建立空間直角坐標(biāo)系,由題意:,,,,,為的中點,.,,,異面直線與所成角的余弦值為即為.故選:B.【點睛】本題考查了空間向量的應(yīng)用,考查了空間想象能力,屬于基礎(chǔ)題.6、C【解析】
對于①中,根據(jù)指數(shù)冪的運算性質(zhì)和不等式的性質(zhì),可判定值正確的;對于②中,構(gòu)造新函數(shù),利用導(dǎo)數(shù)得到函數(shù)為單調(diào)遞增函數(shù),進而得到,即可判定是錯誤的;對于③中,構(gòu)造新函數(shù),利用導(dǎo)數(shù)求得函數(shù)的最大值為,進而得到,即可判定是正確的.【詳解】由題意,對于①中,由,可得,根據(jù)不等式的性質(zhì),可得成立,所以是正確的;對于②中,設(shè)函數(shù),則,所以函數(shù)為單調(diào)遞增函數(shù),因為,則又由,所以,即,所以②不正確;對于③中,設(shè)函數(shù),則,當(dāng)時,,函數(shù)單調(diào)遞增,當(dāng)時,,函數(shù)單調(diào)遞減,所以當(dāng)時,函數(shù)取得最大值,最大值為,所以,即,即,所以是正確的.故選:C.【點睛】本題主要考查了不等式的性質(zhì),以及導(dǎo)數(shù)在函數(shù)中的綜合應(yīng)用,其中解答中根據(jù)題意,合理構(gòu)造新函數(shù),利用導(dǎo)數(shù)求得函數(shù)的單調(diào)性和最值是解答的關(guān)鍵,著重考查了構(gòu)造思想,以及推理與運算能力,屬于中檔試題.7、A【解析】
列出每一步算法循環(huán),可得出輸出結(jié)果的值.【詳解】滿足,執(zhí)行第一次循環(huán),,;成立,執(zhí)行第二次循環(huán),,;成立,執(zhí)行第三次循環(huán),,;成立,執(zhí)行第四次循環(huán),,;成立,執(zhí)行第五次循環(huán),,;成立,執(zhí)行第六次循環(huán),,;成立,執(zhí)行第七次循環(huán),,;成立,執(zhí)行第八次循環(huán),,;不成立,跳出循環(huán)體,輸出的值為,故選:A.【點睛】本題考查算法與程序框圖的計算,解題時要根據(jù)算法框圖計算出算法的每一步,考查分析問題和計算能力,屬于中等題.8、C【解析】
兩復(fù)數(shù)相等,實部與虛部對應(yīng)相等.【詳解】由,得,即a,b=1.∴b=9a.故選:C.【點睛】本題考查復(fù)數(shù)的概念,屬于基礎(chǔ)題.9、B【解析】
根據(jù)正四棱錐底邊邊長為,高為,得到底面的中心到各棱的距離都是1,從而底面的中心即為球心.【詳解】如圖所示:因為正四棱錐底邊邊長為,高為,所以,到的距離為,同理到的距離為1,所以為球的球心,所以球的半徑為:1,所以球的表面積為.故選:B【點睛】本題主要考查組合體的表面積,還考查了空間想象的能力,屬于中檔題.10、C【解析】
直線恒過定點,由此推導(dǎo)出,由此能求出點的坐標(biāo),從而能求出的值.【詳解】設(shè)拋物線的準(zhǔn)線為,直線恒過定點,如圖過A、B分別作于M,于N,由,則,點B為AP的中點、連接OB,則,∴,點B的橫坐標(biāo)為,∴點B的坐標(biāo)為,把代入直線,解得,故選:C.【點睛】本題考查直線與圓錐曲線中參數(shù)的求法,考查拋物線的性質(zhì),是中檔題,解題時要注意等價轉(zhuǎn)化思想的合理運用,屬于中檔題.11、A【解析】
根據(jù)分段函數(shù)的定義得,,則,再根據(jù)基本不等式構(gòu)造出相應(yīng)的所需的形式,可求得函數(shù)的最小值.【詳解】依題意得,,則,(當(dāng)且僅當(dāng),即時“”成立.此時,,,的最小值為,故選:A.【點睛】本題考查求分段函數(shù)的最值,關(guān)鍵在于根據(jù)分段函數(shù)的定義得出,再由基本不等式求得最值,屬于中檔題.12、C【解析】
根據(jù)雙曲線的解析式及離心率,可求得的值;得漸近線方程后,由點到直線距離公式即可求解.【詳解】雙曲線的離心率,則,,解得,所以焦點坐標(biāo)為,所以,則雙曲線漸近線方程為,即,不妨取右焦點,則由點到直線距離公式可得,故選:C.【點睛】本題考查了雙曲線的幾何性質(zhì)及簡單應(yīng)用,漸近線方程的求法,點到直線距離公式的簡單應(yīng)用,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、2889【解析】
先計算集合中最小的數(shù)為,最大的數(shù),可得,求和即得解.【詳解】當(dāng)時,集合中最小數(shù);當(dāng)時,得到集合中最大的數(shù);故答案為:2889【點睛】本題考查了數(shù)列與集合綜合,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運算的能力,屬于中檔題.14、【解析】
令,所求問題的最大值為,只需求出即可,作出可行域,利用幾何意義即可解決.【詳解】作出可行域,如圖令,則,顯然當(dāng)直線經(jīng)過時,最大,且,故的最大值為.故答案為:.【點睛】本題考查線性規(guī)劃中非線性目標(biāo)函數(shù)的最值問題,要做好此類題,前提是正確畫出可行域,本題是一道基礎(chǔ)題.15、【解析】
把已知等式變形,再由復(fù)數(shù)代數(shù)形式的乘除運算化簡,然后利用復(fù)數(shù)模的計算公式求解.【詳解】∵,∴,∴,故答案為:.【點睛】本小題主要考查復(fù)數(shù)除法運算,考查復(fù)數(shù)的模的求法,屬于基礎(chǔ)題.16、【解析】
將f(x)寫成分段函數(shù)形式,分析得f(x)為奇函數(shù)且在R上為增函數(shù),利用奇偶性和單調(diào)性解不等式即可得到答案.【詳解】根據(jù)題意,f(x)=x|x|=,則f(x)為奇函數(shù)且在R上為增函數(shù),則f(2x﹣1)+f(x)≥0?f(2x﹣1)≥﹣f(x)?f(2x﹣1)≥f(﹣x)?2x﹣1≥﹣x,解可得x≥,即x的取值范圍為[,+∞);故答案為:[,+∞).【點睛】本題考查分段函數(shù)的奇偶性與單調(diào)性的判定以及應(yīng)用,注意分析f(x)的奇偶性與單調(diào)性.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2).【解析】試題分析:(1)根據(jù)平面有,利用勾股定理可證明,故平面,再由面面垂直的判定定理可證得結(jié)論;(2)在點建立空間直角坐標(biāo)系,利用二面角的余弦值為建立方程求得,在利用法向量求得和平面所成角的正弦值.試題解析:(Ⅰ)平面平面因為,所以,所以,所以,又,所以平面.因為平面,所以平面平面.(Ⅱ)如圖,以點為原點,分別為軸、軸、軸正方向,建立空間直角坐標(biāo)系,則.設(shè),則取,則為面法向量.設(shè)為面的法向量,則,即,取,則依題意,則.于是.設(shè)直線與平面所成角為,則即直線與平面所成角的正弦值為.18、.【解析】試題分析:,所以.試題解析:B.因為,所以.19、(1)證明見解析;(2).【解析】
(1)將代入函數(shù)解析式可得,構(gòu)造函數(shù),求得并令,由導(dǎo)函數(shù)符號判斷函數(shù)單調(diào)性并求得最大值,由即可證明恒成立,即不等式得證.(2)對函數(shù)求導(dǎo),變形后討論當(dāng)時的函數(shù)單調(diào)情況:當(dāng)時,可知滿足題意;將不等式化簡后構(gòu)造函數(shù),利用導(dǎo)函數(shù)求得極值點與函數(shù)的單調(diào)性,從而求得最小值為,分別依次代入檢驗的符號,即可確定整數(shù)的最大值;當(dāng)時不滿足題意,因為求整數(shù)的最大值,所以時無需再討論.【詳解】(1)證明:當(dāng)時代入可得,令,,則,令解得,當(dāng)時,所以在單調(diào)遞增,當(dāng)時,所以在單調(diào)遞減,所以,則,即成立.(2)函數(shù)則,若時,當(dāng)時,,則在時單調(diào)遞減,所以,即當(dāng)時成立;所以此時需滿足的整數(shù)解即可,將不等式化簡可得,令則令解得,當(dāng)時,即在內(nèi)單調(diào)遞減,當(dāng)時,即在內(nèi)單調(diào)遞增,所以當(dāng)時取得最小值,則,,,所以此時滿足的整數(shù)的最大值為;當(dāng)時,在時,此時,與題意矛盾,所以不成立.因為求整數(shù)的最大值,所以時無需再討論,綜上所述,當(dāng)時,整數(shù)的最大值為.【點睛】本題考查了導(dǎo)數(shù)在證明不等式中的應(yīng)用,導(dǎo)數(shù)與函數(shù)單調(diào)性、極值、最值的關(guān)系和應(yīng)用,構(gòu)造函數(shù)法求最值,并判斷函數(shù)值法符號,綜合性強,屬于難題.20、(1)證明見解析(2)【解析】
(1)由得令可得,進而得到,同理,利用數(shù)量積坐標(biāo)計算即可;(2),分,兩種情況討論即可.【詳解】(1)證明:點的坐標(biāo)為.聯(lián)立方程,消去后整理為有,可得,,.可得點的坐標(biāo)為.當(dāng)時,可求得點的坐標(biāo)為,,.有,故有.(2)若點在軸上方,因為,所以有,由(1)知①因為時.由(1)知,由函數(shù)單調(diào)遞增,可得此時.②當(dāng)時,由(1)知令由,故當(dāng)時,,此時函數(shù)單調(diào)遞增:當(dāng)時,,此時函數(shù)單調(diào)遞減,又由,故函數(shù)的最小值,函數(shù)取最小值時,可求得.由①②知,若點在軸上方,當(dāng)?shù)拿娣e最小時,直線的斜率為.【點睛】本題考查直線與橢圓的位置關(guān)系,涉及到分類討論求函數(shù)的最值,考查學(xué)生的運算求解能力,是一道難題.21、(1);(2).【解析】
(1)建立空間坐標(biāo)系,通過求向量與向量的夾角,轉(zhuǎn)化為異面直線與直線所成的角的大?。唬?)先求出面的一個法向量,再用點到面的距離公式算出即可.【詳解】以為原點,所在直線分別為軸建系,設(shè)所以,,所以異面直線與直線所成的角的余弦值為,異面直線與直線所成的角的大小為.(2)因為,,設(shè)是面的一個法向量,所以有即,令,,故,又,所以點到平面的距離為.【點睛】本題主要考查向量法求異面直線所成角的大小和點到面的距離,意在考查學(xué)生的數(shù)學(xué)建
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 青海衛(wèi)生職業(yè)技術(shù)學(xué)院《能源動力(動力工程)領(lǐng)域論文寫作指導(dǎo)》2023-2024學(xué)年第二學(xué)期期末試卷
- 廣東女子職業(yè)技術(shù)學(xué)院《所得稅與其他稅制》2023-2024學(xué)年第二學(xué)期期末試卷
- 新馬高級中學(xué)高中歷史一導(dǎo)學(xué)案第課辛亥革命
- 2025年安徽池州市金城工程管理服務(wù)有限責(zé)任公司招聘筆試參考題庫含答案解析
- 2025年上海奉賢第一房屋征收服務(wù)事務(wù)所有限公司招聘筆試參考題庫含答案解析
- 2025年內(nèi)蒙古國家能源神華神東煤炭集團招聘筆試參考題庫附帶答案詳解
- 醫(yī)學(xué)腹內(nèi)壓監(jiān)測臨床應(yīng)用與操作規(guī)范
- 不跟陌生人走安全教育
- 打造頂級家庭服務(wù)-賦能員工實現(xiàn)企業(yè)共贏
- 云計算:創(chuàng)新的引擎-探索云計算在科技創(chuàng)新中的角色
- 鋼筋模板混凝土質(zhì)量培訓(xùn)課件
- 《給水排水管道工程施工及驗收規(guī)范》-20210801081158
- 影視鑒賞智慧樹知到答案2024年南華大學(xué)
- 《Photoshop CC圖形圖像處理實例教程》全套教學(xué)課件
- 足療技師免責(zé)協(xié)議書
- 延長石油招聘筆試試題
- DB-T 29-22-2024 天津市住宅設(shè)計標(biāo)準(zhǔn)
- 《高速公路旅游區(qū)標(biāo)志設(shè)置規(guī)范》
- 老年期發(fā)育(人體發(fā)育學(xué))
- 術(shù)后吻合口瘺
- HYT 075-2005 海洋信息分類與代碼(正式版)
評論
0/150
提交評論