安徽省宿州市十三所重點中學2024年高考仿真卷數(shù)學試題含解析_第1頁
安徽省宿州市十三所重點中學2024年高考仿真卷數(shù)學試題含解析_第2頁
安徽省宿州市十三所重點中學2024年高考仿真卷數(shù)學試題含解析_第3頁
安徽省宿州市十三所重點中學2024年高考仿真卷數(shù)學試題含解析_第4頁
安徽省宿州市十三所重點中學2024年高考仿真卷數(shù)學試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

安徽省宿州市十三所重點中學2024年高考仿真卷數(shù)學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若函數(shù)恰有3個零點,則實數(shù)的取值范圍是()A. B. C. D.2.已知變量的幾組取值如下表:12347若與線性相關,且,則實數(shù)()A. B. C. D.3.設,滿足,則的取值范圍是()A. B. C. D.4.已知實數(shù),滿足約束條件,則目標函數(shù)的最小值為A. B.C. D.5.某人2018年的家庭總收人為元,各種用途占比如圖中的折線圖,年家庭總收入的各種用途占比統(tǒng)計如圖中的條形圖,已知年的就醫(yī)費用比年的就醫(yī)費用增加了元,則該人年的儲畜費用為()A.元 B.元 C.元 D.元6.已知雙曲線的一條漸近線方程是,則雙曲線的離心率為()A. B. C. D.7.已知,,則()A. B. C.3 D.48.為得到y(tǒng)=sin(2x-πA.向左平移π3個單位B.向左平移πC.向右平移π3個單位D.向右平移π9.雙曲線的漸近線方程為()A. B. C. D.10.如圖,矩形ABCD中,,,E是AD的中點,將沿BE折起至,記二面角的平面角為,直線與平面BCDE所成的角為,與BC所成的角為,有如下兩個命題:①對滿足題意的任意的的位置,;②對滿足題意的任意的的位置,,則()A.命題①和命題②都成立 B.命題①和命題②都不成立C.命題①成立,命題②不成立 D.命題①不成立,命題②成立11.我們熟悉的卡通形象“哆啦A夢”的長寬比為.在東方文化中通常稱這個比例為“白銀比例”,該比例在設計和建筑領域有著廣泛的應用.已知某電波塔自下而上依次建有第一展望臺和第二展望臺,塔頂?shù)剿椎母叨扰c第二展望臺到塔底的高度之比,第二展望臺到塔底的高度與第一展望臺到塔底的高度之比皆等于“白銀比例”,若兩展望臺間高度差為100米,則下列選項中與該塔的實際高度最接近的是()A.400米 B.480米C.520米 D.600米12.已知雙曲線的一條漸近線傾斜角為,則()A.3 B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)的定義域是____________.(寫成區(qū)間的形式)14.已知數(shù)列的各項均為正數(shù),滿足,.,若是等比數(shù)列,數(shù)列的通項公式_______.15.已知,,且,則的最小值是______.16.設函數(shù)滿足,且當時,又函數(shù),則函數(shù)在上的零點個數(shù)為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖1,在等腰中,,,分別為,的中點,為的中點,在線段上,且。將沿折起,使點到的位置(如圖2所示),且。(1)證明:平面;(2)求平面與平面所成銳二面角的余弦值18.(12分)某超市計劃按月訂購一種酸奶,每天進貨量相同,進貨成本每瓶4元,售價每瓶6元,未售出的酸奶降價處理,以每瓶2元的價格當天全部處理完.根據(jù)往年銷售經(jīng)驗,每天需求量與當天最高氣溫(單位:℃)有關.如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計劃,統(tǒng)計了前三年六月份各天的最高氣溫數(shù)據(jù),得下面的頻數(shù)分布表:最高氣溫[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)天數(shù)216362574以最高氣溫位于各區(qū)間的頻率估計最高氣溫位于該區(qū)間的概率.(1)求六月份這種酸奶一天的需求量不超過300瓶的概率;(2)設六月份一天銷售這種酸奶的利潤為Y(單位:元),當六月份這種酸奶一天的進貨量為450瓶時,寫出Y的所有可能值,并估計Y大于零的概率.19.(12分)“綠水青山就是金山銀山”,為推廣生態(tài)環(huán)境保護意識,高二一班組織了環(huán)境保護興趣小組,分為兩組,討論學習.甲組一共有人,其中男生人,女生人,乙組一共有人,其中男生人,女生人,現(xiàn)要從這人的兩個興趣小組中抽出人參加學校的環(huán)保知識競賽.(1)設事件為“選出的這個人中要求兩個男生兩個女生,而且這兩個男生必須來自不同的組”,求事件發(fā)生的概率;(2)用表示抽取的人中乙組女生的人數(shù),求隨機變量的分布列和期望20.(12分)已知函數(shù)(1)當時,若恒成立,求的最大值;(2)記的解集為集合A,若,求實數(shù)的取值范圍.21.(12分)將棱長為的正方體截去三棱錐后得到如圖所示幾何體,為的中點.(1)求證:平面;(2)求二面角的正弦值.22.(10分)2018年9月,臺風“山竹”在我國多個省市登陸,造成直接經(jīng)濟損失達52億元.某青年志愿者組織調(diào)查了某地區(qū)的50個農(nóng)戶在該次臺風中造成的直接經(jīng)濟損失,將收集的數(shù)據(jù)分成五組:,,,,(單位:元),得到如圖所示的頻率分布直方圖.(1)試根據(jù)頻率分布直方圖估計該地區(qū)每個農(nóng)戶的平均損失(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表);(2)臺風后該青年志愿者與當?shù)卣蛏鐣l(fā)出倡議,為該地區(qū)的農(nóng)戶捐款幫扶,現(xiàn)從這50戶并且損失超過4000元的農(nóng)戶中隨機抽取2戶進行重點幫扶,設抽出損失超過8000元的農(nóng)戶數(shù)為,求的分布列和數(shù)學期望.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

求導函數(shù),求出函數(shù)的極值,利用函數(shù)恰有三個零點,即可求實數(shù)的取值范圍.【詳解】函數(shù)的導數(shù)為,令,則或,上單調(diào)遞減,上單調(diào)遞增,所以0或是函數(shù)y的極值點,函數(shù)的極值為:,函數(shù)恰有三個零點,則實數(shù)的取值范圍是:.故選B.【點睛】該題考查的是有關結合函數(shù)零點個數(shù),來確定參數(shù)的取值范圍的問題,在解題的過程中,注意應用導數(shù)研究函數(shù)圖象的走向,利用數(shù)形結合思想,轉化為函數(shù)圖象間交點個數(shù)的問題,難度不大.2、B【解析】

求出,把坐標代入方程可求得.【詳解】據(jù)題意,得,所以,所以.故選:B.【點睛】本題考查線性回歸直線方程,由性質線性回歸直線一定過中心點可計算參數(shù)值.3、C【解析】

首先繪制出可行域,再繪制出目標函數(shù),根據(jù)可行域范圍求出目標函數(shù)中的取值范圍.【詳解】由題知,滿足,可行域如下圖所示,可知目標函數(shù)在點處取得最小值,故目標函數(shù)的最小值為,故的取值范圍是.故選:D.【點睛】本題主要考查了線性規(guī)劃中目標函數(shù)的取值范圍的問題,屬于基礎題.4、B【解析】

作出不等式組對應的平面區(qū)域,目標函數(shù)的幾何意義為動點到定點的斜率,利用數(shù)形結合即可得到的最小值.【詳解】解:作出不等式組對應的平面區(qū)域如圖:目標函數(shù)的幾何意義為動點到定點的斜率,當位于時,此時的斜率最小,此時.故選B.【點睛】本題主要考查線性規(guī)劃的應用以及兩點之間的斜率公式的計算,利用z的幾何意義,通過數(shù)形結合是解決本題的關鍵.5、A【解析】

根據(jù)2018年的家庭總收人為元,且就醫(yī)費用占得到就醫(yī)費用,再根據(jù)年的就醫(yī)費用比年的就醫(yī)費用增加了元,得到年的就醫(yī)費用,然后由年的就醫(yī)費用占總收人,得到2019年的家庭總收人再根據(jù)儲畜費用占總收人求解.【詳解】因為2018年的家庭總收人為元,且就醫(yī)費用占所以就醫(yī)費用因為年的就醫(yī)費用比年的就醫(yī)費用增加了元,所以年的就醫(yī)費用元,而年的就醫(yī)費用占總收人所以2019年的家庭總收人為而儲畜費用占總收人所以儲畜費用:故選:A【點睛】本題主要考查統(tǒng)計中的折線圖和條形圖的應用,還考查了建模解模的能力,屬于基礎題.6、D【解析】雙曲線的漸近線方程是,所以,即,,即,,故選D.7、A【解析】

根據(jù)復數(shù)相等的特征,求出和,再利用復數(shù)的模公式,即可得出結果.【詳解】因為,所以,解得則.故選:A.【點睛】本題考查相等復數(shù)的特征和復數(shù)的模,屬于基礎題.8、D【解析】試題分析:因為,所以為得到y(tǒng)=sin(2x-π3)的圖象,只需要將考點:三角函數(shù)的圖像變換.9、C【解析】

根據(jù)雙曲線的標準方程,即可寫出漸近線方程.【詳解】雙曲線,雙曲線的漸近線方程為,故選:C【點睛】本題主要考查了雙曲線的簡單幾何性質,屬于容易題.10、A【解析】

作出二面角的補角、線面角、線線角的補角,由此判斷出兩個命題的正確性.【詳解】①如圖所示,過作平面,垂足為,連接,作,連接.由圖可知,,所以,所以①正確.②由于,所以與所成角,所以,所以②正確.綜上所述,①②都正確.故選:A【點睛】本題考查了折疊問題、空間角、數(shù)形結合方法,考查了推理能力與計算能力,屬于中檔題.11、B【解析】

根據(jù)題意,畫出幾何關系,結合各線段比例可先求得第一展望臺和第二展望臺的距離,進而由比例即可求得該塔的實際高度.【詳解】設第一展望臺到塔底的高度為米,塔的實際高度為米,幾何關系如下圖所示:由題意可得,解得;且滿足,故解得塔高米,即塔高約為480米.故選:B【點睛】本題考查了對中國文化的理解與簡單應用,屬于基礎題.12、D【解析】

由雙曲線方程可得漸近線方程,根據(jù)傾斜角可得漸近線斜率,由此構造方程求得結果.【詳解】由雙曲線方程可知:,漸近線方程為:,一條漸近線的傾斜角為,,解得:.故選:.【點睛】本題考查根據(jù)雙曲線漸近線傾斜角求解參數(shù)值的問題,關鍵是明確直線傾斜角與斜率的關系;易錯點是忽略方程表示雙曲線對于的范圍的要求.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

要使函數(shù)有意義,需滿足,即,解得,故函數(shù)的定義域是.14、【解析】

利用遞推關系,等比數(shù)列的通項公式即可求得結果.【詳解】因為,所以,因為是等比數(shù)列,所以數(shù)列的公比為1.又,所以當時,有.這說明在已知條件下,可以得到唯一的等比數(shù)列,所以,故答案為:.【點睛】該題考查的是有關數(shù)列的問題,涉及到的知識點有根據(jù)遞推公式求數(shù)列的通項公式,屬于簡單題目.15、8【解析】

由整體代入法利用基本不等式即可求得最小值.【詳解】,當且僅當時等號成立.故的最小值為8,故答案為:8.【點睛】本題考查基本不等式求和的最小值,整體代入法,屬于基礎題.16、1【解析】

判斷函數(shù)為偶函數(shù),周期為2,判斷為偶函數(shù),計算,,畫出函數(shù)圖像,根據(jù)圖像到答案.【詳解】知,函數(shù)為偶函數(shù),,函數(shù)關于對稱。,故函數(shù)為周期為2的周期函數(shù),且。為偶函數(shù),,,當時,,,函數(shù)先增后減。當時,,,函數(shù)先增后減。在同一坐標系下作出兩函數(shù)在上的圖像,發(fā)現(xiàn)在內(nèi)圖像共有1個公共點,則函數(shù)在上的零點個數(shù)為1.故答案為:.【點睛】本題考查了函數(shù)零點問題,確定函數(shù)的奇偶性,對稱性,周期性,畫出函數(shù)圖像是解題的關鍵.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】

(1)要證明線面平行,需證明線線平行,取的中點,連接,根據(jù)條件證明,即;(2)以為原點,所在直線為軸,過作平行于的直線為軸,所在直線為軸,建立空間直角坐標系,求兩個平面的法向量,利用法向量求二面角的余弦值.【詳解】(1)證明:取的中點,連接.∵,∴為的中點.又為的中點,∴.依題意可知,則四邊形為平行四邊形,∴,從而.又平面,平面,∴平面.(2),且,平面,平面,,,且,平面,以為原點,所在直線為軸,過作平行于的直線為軸,所在直線為軸,建立空間直角坐標系,不妨設,則,,,,,,,,.設平面的法向量為,則,即,令,得.設平面的法向量為,則,即,令,得.從而,故平面與平面所成銳二面角的余弦值為.【點睛】本題考查線面平行的證明和空間坐標法解決二面角的問題,意在考查空間想象能力,推理證明和計算能力,屬于中檔題型,證明線面平行,或證明面面平行時,關鍵是證明線線平行,所以做輔助線或證明時,需考慮構造中位線或平行四邊形,這些都是證明線線平行的常方法.18、(1).(2).【解析】

(1)由前三年六月份各天的最高氣溫數(shù)據(jù),求出最高氣溫位于區(qū)間[20,25)和最高氣溫低于20的天數(shù),由此能求出六月份這種酸奶一天的需求量不超過300瓶的概率.(2)當溫度大于等于25℃時,需求量為500,求出Y=900元;當溫度在[20,25)℃時,需求量為300,求出Y=300元;當溫度低于20℃時,需求量為200,求出Y=﹣100元,從而當溫度大于等于20時,Y>0,由此能估計估計Y大于零的概率.【詳解】解:(1)由前三年六月份各天的最高氣溫數(shù)據(jù),得到最高氣溫位于區(qū)間[20,25)和最高氣溫低于20的天數(shù)為2+16+36=54,根據(jù)往年銷售經(jīng)驗,每天需求量與當天最高氣溫(單位:℃)有關.如果最高氣溫不低于25,需求量為500瓶,如果最高氣溫位于區(qū)間[20,25),需求量為300瓶,如果最高氣溫低于20,需求量為200瓶,∴六月份這種酸奶一天的需求量不超過300瓶的概率p.(2)當溫度大于等于25℃時,需求量為500,Y=450×2=900元,當溫度在[20,25)℃時,需求量為300,Y=300×2﹣(450﹣300)×2=300元,當溫度低于20℃時,需求量為200,Y=400﹣(450﹣200)×2=﹣100元,當溫度大于等于20時,Y>0,由前三年六月份各天的最高氣溫數(shù)據(jù),得當溫度大于等于20℃的天數(shù)有:90﹣(2+16)=72,∴估計Y大于零的概率P.【點睛】本題考查概率的求法,考查利潤的所有可能取值的求法,考查函數(shù)、古典概型等基礎知識,考查推理論證能力、運算求解能力、空間想象能力,考查數(shù)形結合思想、化歸與轉化思想,是中檔題.19、(Ⅰ);(Ⅱ)分布列見解析,.【解析】

(Ⅰ)直接利用古典概型概率公式求.(Ⅱ)先由題得可能取值為,再求x的分布列和期望.【詳解】(Ⅰ)(Ⅱ)可能取值為,,,,,的分布列為0123.【點睛】本題主要考查古典概型的計算,考查隨機變量的分布列和期望的計算,意在考查學生對這些知識的理解掌握水平和分析推理能力.20、(1);(2)【解析】

(1)當時,由題意得到,令,分類討論求得函數(shù)的最小值,即可求得的最大值.(2)由時,不等式恒成立,轉化為在上恒成立,得到,即可求解.【詳解】(1)由題意,當時,由,可得,令,則只需,當時,;當時,;當時,;故當時,取得最小值,即的最大值為.(2)依題意,當時,不等式恒成立,即在上恒成立,所以,即,即,解得在上恒成立,則,所以,所示實數(shù)的取值范圍是.【點睛】本題主要考查了含絕對值的不等式的解法,以及不等式的恒成立問題的求解與應用,著重考查了轉化思想,以及推理與計算能力.21、(1)見解析;(2).【解析】

(1)取的中點,連接、,連接,證明出四邊

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論