版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2024屆深圳市龍崗區(qū)高考全國統(tǒng)考預(yù)測密卷數(shù)學(xué)試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知為拋物線的焦點(diǎn),點(diǎn)在上,若直線與的另一個(gè)交點(diǎn)為,則()A. B. C. D.2.歷史上有不少數(shù)學(xué)家都對圓周率作過研究,第一個(gè)用科學(xué)方法尋求圓周率數(shù)值的人是阿基米德,他用圓內(nèi)接和外切正多邊形的周長確定圓周長的上下界,開創(chuàng)了圓周率計(jì)算的幾何方法,而中國數(shù)學(xué)家劉徽只用圓內(nèi)接正多邊形就求得的近似值,他的方法被后人稱為割圓術(shù).近代無窮乘積式、無窮連分?jǐn)?shù)、無窮級數(shù)等各種值的表達(dá)式紛紛出現(xiàn),使得值的計(jì)算精度也迅速增加.華理斯在1655年求出一個(gè)公式:,根據(jù)該公式繪制出了估計(jì)圓周率的近似值的程序框圖,如下圖所示,執(zhí)行該程序框圖,已知輸出的,若判斷框內(nèi)填入的條件為,則正整數(shù)的最小值是A. B. C. D.3.已知拋物線,過拋物線上兩點(diǎn)分別作拋物線的兩條切線為兩切線的交點(diǎn)為坐標(biāo)原點(diǎn)若,則直線與的斜率之積為()A. B. C. D.4.是恒成立的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件5.山東煙臺蘋果因“果形端正、色澤艷麗、果肉甜脆、香氣濃郁”享譽(yù)國內(nèi)外.據(jù)統(tǒng)計(jì),煙臺蘋果(把蘋果近似看成球體)的直徑(單位:)服從正態(tài)分布,則直徑在內(nèi)的概率為()附:若,則,.A.0.6826 B.0.8413 C.0.8185 D.0.95446.定義在上的奇函數(shù)滿足,若,,則()A. B.0 C.1 D.27.若,滿足約束條件,則的取值范圍為()A. B. C. D.8.已知三棱錐的體積為2,是邊長為2的等邊三角形,且三棱錐的外接球的球心恰好是中點(diǎn),則球的表面積為()A. B. C. D.9.雙曲線的漸近線方程為()A. B.C. D.10.已知復(fù)數(shù)滿足,且,則()A.3 B. C. D.11.設(shè)分別是雙曲線的左右焦點(diǎn)若雙曲線上存在點(diǎn),使,且,則雙曲線的離心率為()A. B.2 C. D.12.雙曲線C:(,)的離心率是3,焦點(diǎn)到漸近線的距離為,則雙曲線C的焦距為()A.3 B. C.6 D.二、填空題:本題共4小題,每小題5分,共20分。13.若點(diǎn)在直線上,則的值等于______________.14.已知函數(shù)在處的切線與直線平行,則為________.15.在直角坐標(biāo)系中,已知點(diǎn)和點(diǎn),若點(diǎn)在的平分線上,且,則向量的坐標(biāo)為___________.16.記復(fù)數(shù)z=a+bi(i為虛數(shù)單位)的共軛復(fù)數(shù)為,已知z=2+i,則_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知等差數(shù)列an,和等比數(shù)列b(I)求數(shù)列{an}(II)求數(shù)列n2an?a18.(12分)已知橢圓()的離心率為,且經(jīng)過點(diǎn).(1)求橢圓的方程;(2)過點(diǎn)作直線與橢圓交于不同的兩點(diǎn),,試問在軸上是否存在定點(diǎn)使得直線與直線恰關(guān)于軸對稱?若存在,求出點(diǎn)的坐標(biāo);若不存在,說明理由.19.(12分)為了拓展城市的旅游業(yè),實(shí)現(xiàn)不同市區(qū)間的物資交流,政府決定在市與市之間建一條直達(dá)公路,中間設(shè)有至少8個(gè)的偶數(shù)個(gè)十字路口,記為,現(xiàn)規(guī)劃在每個(gè)路口處種植一顆楊樹或者木棉樹,且種植每種樹木的概率均為.(1)現(xiàn)征求兩市居民的種植意見,看看哪一種植物更受歡迎,得到的數(shù)據(jù)如下所示:A市居民B市居民喜歡楊樹300200喜歡木棉樹250250是否有的把握認(rèn)為喜歡樹木的種類與居民所在的城市具有相關(guān)性;(2)若從所有的路口中隨機(jī)抽取4個(gè)路口,恰有個(gè)路口種植楊樹,求的分布列以及數(shù)學(xué)期望;(3)在所有的路口種植完成后,選取3個(gè)種植同一種樹的路口,記總的選取方法數(shù)為,求證:.附:0.1000.0500.0100.0012.7063.8416.63510.82820.(12分)在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(m為參數(shù)),以坐標(biāo)點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρcos(θ+)=1.(1)求直線l的直角坐標(biāo)方程和曲線C的普通方程;(2)已知點(diǎn)M(2,0),若直線l與曲線C相交于P、Q兩點(diǎn),求的值.21.(12分)某調(diào)查機(jī)構(gòu)為了了解某產(chǎn)品年產(chǎn)量x(噸)對價(jià)格y(千克/噸)和利潤z的影響,對近五年該產(chǎn)品的年產(chǎn)量和價(jià)格統(tǒng)計(jì)如下表:x12345y17.016.515.513.812.2(1)求y關(guān)于x的線性回歸方程;(2)若每噸該產(chǎn)品的成本為12千元,假設(shè)該產(chǎn)品可全部賣出,預(yù)測當(dāng)年產(chǎn)量為多少時(shí),年利潤w取到最大值?參考公式:22.(10分)在平面直角坐標(biāo)系中,有一個(gè)微型智能機(jī)器人(大小不計(jì))只能沿著坐標(biāo)軸的正方向或負(fù)方向行進(jìn),且每一步只能行進(jìn)1個(gè)單位長度,例如:該機(jī)器人在點(diǎn)處時(shí),下一步可行進(jìn)到、、、這四個(gè)點(diǎn)中的任一位置.記該機(jī)器人從坐標(biāo)原點(diǎn)出發(fā)、行進(jìn)步后落在軸上的不同走法的種數(shù)為.(1)分別求、、的值;(2)求的表達(dá)式.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
求得點(diǎn)坐標(biāo),由此求得直線的方程,聯(lián)立直線的方程和拋物線的方程,求得點(diǎn)坐標(biāo),進(jìn)而求得【詳解】拋物線焦點(diǎn)為,令,,解得,不妨設(shè),則直線的方程為,由,解得,所以.故選:C【點(diǎn)睛】本小題主要考查拋物線的弦長的求法,屬于基礎(chǔ)題.2、B【解析】
初始:,,第一次循環(huán):,,繼續(xù)循環(huán);第二次循環(huán):,,此時(shí),滿足條件,結(jié)束循環(huán),所以判斷框內(nèi)填入的條件可以是,所以正整數(shù)的最小值是3,故選B.3、A【解析】
設(shè)出A,B的坐標(biāo),利用導(dǎo)數(shù)求出過A,B的切線的斜率,結(jié)合,可得x1x2=﹣1.再寫出OA,OB所在直線的斜率,作積得答案.【詳解】解:設(shè)A(),B(),由拋物線C:x2=1y,得,則y′.∴,,由,可得,即x1x2=﹣1.又,,∴.故選:A.點(diǎn)睛:(1)本題主要考查拋物線的簡單幾何性質(zhì),考查直線和拋物線的位置關(guān)系,意在考查學(xué)生對這些基礎(chǔ)知識的掌握能力和分析推理能力.(2)解答本題的關(guān)鍵是解題的思路,由于與切線有關(guān),所以一般先設(shè)切點(diǎn),先設(shè)A,B,,再求切線PA,PB方程,求點(diǎn)P坐標(biāo),再根據(jù)得到最后求直線與的斜率之積.如果先設(shè)點(diǎn)P的坐標(biāo),計(jì)算量就大一些.4、A【解析】
設(shè)成立;反之,滿足,但,故選A.5、C【解析】
根據(jù)服從的正態(tài)分布可得,,將所求概率轉(zhuǎn)化為,結(jié)合正態(tài)分布曲線的性質(zhì)可求得結(jié)果.【詳解】由題意,,,則,,所以,.故果實(shí)直徑在內(nèi)的概率為0.8185.故選:C【點(diǎn)睛】本題考查根據(jù)正態(tài)分布求解待定區(qū)間的概率問題,考查了正態(tài)曲線的對稱性,屬于基礎(chǔ)題.6、C【解析】
首先判斷出是周期為的周期函數(shù),由此求得所求表達(dá)式的值.【詳解】由已知為奇函數(shù),得,而,所以,所以,即的周期為.由于,,,所以,,,.所以,又,所以.故選:C【點(diǎn)睛】本小題主要考查函數(shù)的奇偶性和周期性,屬于基礎(chǔ)題.7、B【解析】
根據(jù)約束條件作出可行域,找到使直線的截距取最值得點(diǎn),相應(yīng)坐標(biāo)代入即可求得取值范圍.【詳解】畫出可行域,如圖所示:由圖可知,當(dāng)直線經(jīng)過點(diǎn)時(shí),取得最小值-5;經(jīng)過點(diǎn)時(shí),取得最大值5,故.故選:B【點(diǎn)睛】本題考查根據(jù)線性規(guī)劃求范圍,屬于基礎(chǔ)題.8、A【解析】
根據(jù)是中點(diǎn)這一條件,將棱錐的高轉(zhuǎn)化為球心到平面的距離,即可用勾股定理求解.【詳解】解:設(shè)點(diǎn)到平面的距離為,因?yàn)槭侵悬c(diǎn),所以到平面的距離為,三棱錐的體積,解得,作平面,垂足為的外心,所以,且,所以在中,,此為球的半徑,.故選:A.【點(diǎn)睛】本題考查球的表面積,考查點(diǎn)到平面的距離,屬于中檔題.9、A【解析】
將雙曲線方程化為標(biāo)準(zhǔn)方程為,其漸近線方程為,化簡整理即得漸近線方程.【詳解】雙曲線得,則其漸近線方程為,整理得.故選:A【點(diǎn)睛】本題主要考查了雙曲線的標(biāo)準(zhǔn)方程,雙曲線的簡單性質(zhì)的應(yīng)用.10、C【解析】
設(shè),則,利用和求得,即可.【詳解】設(shè),則,因?yàn)?則,所以,又,即,所以,所以,故選:C【點(diǎn)睛】本題考查復(fù)數(shù)的乘法法則的應(yīng)用,考查共軛復(fù)數(shù)的應(yīng)用.11、A【解析】
由及雙曲線定義得和(用表示),然后由余弦定理得出的齊次等式后可得離心率.【詳解】由題意∵,∴由雙曲線定義得,從而得,,在中,由余弦定理得,化簡得.故選:A.【點(diǎn)睛】本題考查求雙曲線的離心率,解題關(guān)鍵是應(yīng)用雙曲線定義用表示出到兩焦點(diǎn)的距離,再由余弦定理得出的齊次式.12、A【解析】
根據(jù)焦點(diǎn)到漸近線的距離,可得,然后根據(jù),可得結(jié)果.【詳解】由題可知:雙曲線的漸近線方程為取右焦點(diǎn),一條漸近線則點(diǎn)到的距離為,由所以,則又所以所以焦距為:故選:A【點(diǎn)睛】本題考查雙曲線漸近線方程,以及之間的關(guān)系,識記常用的結(jié)論:焦點(diǎn)到漸近線的距離為,屬基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)題意可得,再由,即可得到結(jié)論.【詳解】由題意,得,又,解得,當(dāng)時(shí),則,此時(shí);當(dāng)時(shí),則,此時(shí),綜上,.故答案為:.【點(diǎn)睛】本題考查誘導(dǎo)公式和同角的三角函數(shù)的關(guān)系,考查計(jì)算能力,屬于基礎(chǔ)題.14、【解析】
根據(jù)題意得出,由此可得出實(shí)數(shù)的值.【詳解】,,直線的斜率為,由于函數(shù)在處的切線與直線平行,則.故答案為:.【點(diǎn)睛】本題考查利用函數(shù)的切線與直線平行求參數(shù),解題時(shí)要結(jié)合兩直線的位置關(guān)系得出兩直線斜率之間的關(guān)系,考查計(jì)算能力,屬于基礎(chǔ)題.15、【解析】
點(diǎn)在的平分線可知與向量共線,利用線性運(yùn)算求解即可.【詳解】因?yàn)辄c(diǎn)在的平線上,所以存在使,而,可解得,所以,故答案為:【點(diǎn)睛】本題主要考查了向量的線性運(yùn)算,利用向量的坐標(biāo)求向量的模,屬于中檔題.16、3﹣4i【解析】
計(jì)算得到z2=(2+i)2=3+4i,再計(jì)算得到答案.【詳解】∵z=2+i,∴z2=(2+i)2=3+4i,則.故答案為:3﹣4i.【點(diǎn)睛】本題考查了復(fù)數(shù)的運(yùn)算,共軛復(fù)數(shù),意在考查學(xué)生的計(jì)算能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(I)an=2n-1,bn=【解析】
(I)直接利用等差數(shù)列,等比數(shù)列公式聯(lián)立方程計(jì)算得到答案.(II)n2【詳解】(I)a1=b解得d=2q=3,故an=2n-1(II)n=14+【點(diǎn)睛】本題考查了等差數(shù)列,等比數(shù)列,裂項(xiàng)求和,意在考查學(xué)生對于數(shù)列公式方法的綜合應(yīng)用.18、(1)(2)見解析【解析】
(1)由題得a,b,c的方程組求解即可(2)直線與直線恰關(guān)于軸對稱,等價(jià)于的斜率互為相反數(shù),即,整理.設(shè)直線的方程為,與橢圓聯(lián)立,將韋達(dá)定理代入整理即可.【詳解】(1)由題意可得,,又,解得,.所以,橢圓的方程為(2)存在定點(diǎn),滿足直線與直線恰關(guān)于軸對稱.設(shè)直線的方程為,與橢圓聯(lián)立,整理得,.設(shè),,定點(diǎn).(依題意則由韋達(dá)定理可得,,.直線與直線恰關(guān)于軸對稱,等價(jià)于的斜率互為相反數(shù).所以,,即得.又,,所以,,整理得,.從而可得,,即,所以,當(dāng),即時(shí),直線與直線恰關(guān)于軸對稱成立.特別地,當(dāng)直線為軸時(shí),也符合題意.綜上所述,存在軸上的定點(diǎn),滿足直線與直線恰關(guān)于軸對稱.【點(diǎn)睛】本題考查橢圓方程,直線與橢圓位置關(guān)系,熟記橢圓方程簡單性質(zhì),熟練轉(zhuǎn)化題目條件,準(zhǔn)確計(jì)算是關(guān)鍵,是中檔題.19、(1)沒有(2)分布列見解析,(3)證明見解析【解析】
(1)根據(jù)公式計(jì)算卡方值,再對應(yīng)卡值表判斷..(2)根據(jù)題意,隨機(jī)變量的可能取值為0,1,2,3,4,分別求得概率,寫出分布列,根據(jù)期望公式求值.(3)因?yàn)橹辽?個(gè)的偶數(shù)個(gè)十字路口,所以,即.要證,即證,根據(jù)組合數(shù)公式,即證;易知有.成立.設(shè)個(gè)路口中有個(gè)路口種植楊樹,下面分類討論①當(dāng)時(shí),由論證.②當(dāng)時(shí),由論證.③當(dāng)時(shí),,設(shè),再論證當(dāng)時(shí),取得最小值即可.【詳解】(1)本次實(shí)驗(yàn)中,,故沒有99.9%的把握認(rèn)為喜歡樹木的種類與居民所在的城市具有相關(guān)性.(2)依題意,的可能取值為0,1,2,3,4,故,,01234故.(3)∵,∴.要證,即證;首先證明:對任意,有.證明:因?yàn)?,所?設(shè)個(gè)路口中有個(gè)路口種植楊樹,①當(dāng)時(shí),,因?yàn)?,所以,于?②當(dāng)時(shí),,同上可得③當(dāng)時(shí),,設(shè),當(dāng)時(shí),,顯然,當(dāng)即時(shí),,當(dāng)即時(shí),,即;,因此,即.綜上,,即.【點(diǎn)睛】本題考查獨(dú)立性檢驗(yàn)、離散型隨機(jī)變量的分布列以及期望、排列組合,還考查運(yùn)算求解能力以及必然與或然思想,屬于難題.20、(1)l:,C方程為;(2)=【解析】
(1)直接利用轉(zhuǎn)換關(guān)系,把參數(shù)方程極坐標(biāo)方程和直角坐標(biāo)方程之間進(jìn)行轉(zhuǎn)換.
(2)利用一元二次方程根和系數(shù)關(guān)系式的應(yīng)用求出結(jié)果.【詳解】(1)曲線C的參數(shù)方程為(m為參數(shù)),兩式相加得到,進(jìn)一步轉(zhuǎn)換為.直線l的極坐標(biāo)方程為ρcos(θ+)=1,則轉(zhuǎn)換為直角坐標(biāo)方程為.(2)將直線的方程轉(zhuǎn)換為參數(shù)方程為(t為參數(shù)),代入得到(t1和t2為P、Q對應(yīng)的參數(shù)),所以,,所以=.【點(diǎn)睛】本題考查參數(shù)方程極坐標(biāo)方程和直角坐標(biāo)方程之間的轉(zhuǎn)換,一元二次方程根和系數(shù)關(guān)系式的應(yīng)用,主要考查學(xué)生的運(yùn)算能力和轉(zhuǎn)換能力及思維能力,屬于基礎(chǔ)題型.21、(1)(2)當(dāng)時(shí),年利潤最大.【解析】
(1)方法一:令
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度智能交通系統(tǒng)代理服務(wù)合同4篇
- 2025年度智能鋁板裝配一體化工程承包合同4篇
- 2025年度智慧城市建設(shè)項(xiàng)目承包經(jīng)營合同范本8篇
- 2025年度水電工程水土保持與生態(tài)修復(fù)承包合同集錦4篇
- 2025年度體育場館設(shè)施升級改造勞務(wù)分包合同3篇
- 2024年精簡版房地產(chǎn)銷售協(xié)議綱要版
- 2025年度特種車輛租賃與維護(hù)服務(wù)協(xié)議3篇
- 2025年度文化創(chuàng)意產(chǎn)業(yè)園區(qū)建設(shè)承包借款合同4篇
- 2025年度智能路燈與充電樁一體化安裝服務(wù)合同3篇
- 2024藝人經(jīng)紀(jì)合同糾紛案例
- 副廠長競聘演講稿
- 高二物理題庫及答案
- 2024年河北省廊坊市廣陽區(qū)中考一模道德與法治試題
- 電影項(xiàng)目策劃書
- 產(chǎn)業(yè)園區(qū)金融綜合服務(wù)創(chuàng)新藍(lán)皮書(2024.1)
- 高一數(shù)學(xué)單元練習(xí)卷
- 國際標(biāo)準(zhǔn)IQ測試題及答案樣本
- 美容院管理制度章程
- 職業(yè)發(fā)展展示園林
- 統(tǒng)編版六年級下冊語文1-6單元習(xí)作課件
- 社會安全風(fēng)險(xiǎn)評估模型的研究
評論
0/150
提交評論