2023-2024學(xué)年遼寧省大連市大世界高級中學(xué)高考仿真卷數(shù)學(xué)試卷含解析_第1頁
2023-2024學(xué)年遼寧省大連市大世界高級中學(xué)高考仿真卷數(shù)學(xué)試卷含解析_第2頁
2023-2024學(xué)年遼寧省大連市大世界高級中學(xué)高考仿真卷數(shù)學(xué)試卷含解析_第3頁
2023-2024學(xué)年遼寧省大連市大世界高級中學(xué)高考仿真卷數(shù)學(xué)試卷含解析_第4頁
2023-2024學(xué)年遼寧省大連市大世界高級中學(xué)高考仿真卷數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年遼寧省大連市大世界高級中學(xué)高考仿真卷數(shù)學(xué)試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知復(fù)數(shù)z滿足(其中i為虛數(shù)單位),則復(fù)數(shù)z的虛部是()A. B.1 C. D.i2.定義運(yùn)算,則函數(shù)的圖象是().A. B.C. D.3.直線與圓的位置關(guān)系是()A.相交 B.相切 C.相離 D.相交或相切4.在直角中,,,,若,則()A. B. C. D.5.已知等邊△ABC內(nèi)接于圓:x2+y2=1,且P是圓τ上一點(diǎn),則的最大值是()A. B.1 C. D.26.已知函數(shù),則()A.1 B.2 C.3 D.47.已知復(fù)數(shù)滿足,則()A. B.2 C.4 D.38.設(shè),集合,則()A. B. C. D.9.已知(),i為虛數(shù)單位,則()A. B.3 C.1 D.510.已知為實(shí)數(shù)集,,,則()A. B. C. D.11.給出以下四個命題:①依次首尾相接的四條線段必共面;②過不在同一條直線上的三點(diǎn),有且只有一個平面;③空間中如果一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角必相等;④垂直于同一直線的兩條直線必平行.其中正確命題的個數(shù)是()A.0 B.1 C.2 D.312.設(shè)命題:,,則為A., B.,C., D.,二、填空題:本題共4小題,每小題5分,共20分。13.已知的展開式中第項(xiàng)與第項(xiàng)的二項(xiàng)式系數(shù)相等,則__________.14.“”是“”的__________條件.(填寫“充分必要”、“充分不必要”、“必要不充分”、“既不充分也不必要”之一)15.過動點(diǎn)作圓:的切線,其中為切點(diǎn),若(為坐標(biāo)原點(diǎn)),則的最小值是__________.16.二項(xiàng)式的展開式中所有項(xiàng)的二項(xiàng)式系數(shù)之和是64,則展開式中的常數(shù)項(xiàng)為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某公司生產(chǎn)的某種產(chǎn)品,如果年返修率不超過千分之一,則其生產(chǎn)部門當(dāng)年考核優(yōu)秀,現(xiàn)獲得該公司年的相關(guān)數(shù)據(jù)如下表所示:年份20112012201320142015201620172018年生產(chǎn)臺數(shù)(萬臺)2345671011該產(chǎn)品的年利潤(百萬元)2.12.753.53.2534.966.5年返修臺數(shù)(臺)2122286580658488部分計算結(jié)果:,,,,注:年返修率=(1)從該公司年的相關(guān)數(shù)據(jù)中任意選取3年的數(shù)據(jù),以表示3年中生產(chǎn)部門獲得考核優(yōu)秀的次數(shù),求的分布列和數(shù)學(xué)期望;(2)根據(jù)散點(diǎn)圖發(fā)現(xiàn)2015年數(shù)據(jù)偏差較大,如果去掉該年的數(shù)據(jù),試用剩下的數(shù)據(jù)求出年利潤(百萬元)關(guān)于年生產(chǎn)臺數(shù)(萬臺)的線性回歸方程(精確到0.01).附:線性回歸方程中,,.18.(12分)在中,角,,所對的邊分別為,,,且.求的值;設(shè)的平分線與邊交于點(diǎn),已知,,求的值.19.(12分)已知數(shù)列和滿足:.(1)求證:數(shù)列為等比數(shù)列;(2)求數(shù)列的前項(xiàng)和.20.(12分)如圖,為坐標(biāo)原點(diǎn),點(diǎn)為拋物線的焦點(diǎn),且拋物線上點(diǎn)處的切線與圓相切于點(diǎn)(1)當(dāng)直線的方程為時,求拋物線的方程;(2)當(dāng)正數(shù)變化時,記分別為的面積,求的最小值.21.(12分)在中,,是邊上一點(diǎn),且,.(1)求的長;(2)若的面積為14,求的長.22.(10分)△的內(nèi)角的對邊分別為,且.(1)求角的大小(2)若,△的面積,求△的周長.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】

由虛數(shù)單位i的運(yùn)算性質(zhì)可得,則答案可求.【詳解】解:∵,∴,,則化為,∴z的虛部為.故選:A.【點(diǎn)睛】本題考查了虛數(shù)單位i的運(yùn)算性質(zhì)、復(fù)數(shù)的概念,屬于基礎(chǔ)題.2、A【解析】

由已知新運(yùn)算的意義就是取得中的最小值,因此函數(shù),只有選項(xiàng)中的圖象符合要求,故選A.3、D【解析】

由幾何法求出圓心到直線的距離,再與半徑作比較,由此可得出結(jié)論.【詳解】解:由題意,圓的圓心為,半徑,∵圓心到直線的距離為,,,故選:D.【點(diǎn)睛】本題主要考查直線與圓的位置關(guān)系,屬于基礎(chǔ)題.4、C【解析】

在直角三角形ABC中,求得,再由向量的加減運(yùn)算,運(yùn)用平面向量基本定理,結(jié)合向量數(shù)量積的定義和性質(zhì):向量的平方即為模的平方,化簡計算即可得到所求值.【詳解】在直角中,,,,,

,

若,則故選C.【點(diǎn)睛】本題考查向量的加減運(yùn)算和數(shù)量積的定義和性質(zhì),主要是向量的平方即為模的平方,考查運(yùn)算能力,屬于中檔題.5、D【解析】

如圖所示建立直角坐標(biāo)系,設(shè),則,計算得到答案.【詳解】如圖所示建立直角坐標(biāo)系,則,,,設(shè),則.當(dāng),即時等號成立.故選:.【點(diǎn)睛】本題考查了向量的計算,建立直角坐標(biāo)系利用坐標(biāo)計算是解題的關(guān)鍵.6、C【解析】

結(jié)合分段函數(shù)的解析式,先求出,進(jìn)而可求出.【詳解】由題意可得,則.故選:C.【點(diǎn)睛】本題考查了求函數(shù)的值,考查了分段函數(shù)的性質(zhì),考查運(yùn)算求解能力,屬于基礎(chǔ)題.7、A【解析】

由復(fù)數(shù)除法求出,再由模的定義計算出模.【詳解】.故選:A.【點(diǎn)睛】本題考查復(fù)數(shù)的除法法則,考查復(fù)數(shù)模的運(yùn)算,屬于基礎(chǔ)題.8、B【解析】

先化簡集合A,再求.【詳解】由得:,所以,因此,故答案為B【點(diǎn)睛】本題主要考查集合的化簡和運(yùn)算,意在考查學(xué)生對這些知識的掌握水平和計算推理能力.9、C【解析】

利用復(fù)數(shù)代數(shù)形式的乘法運(yùn)算化簡得答案.【詳解】由,得,解得.故選:C.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘法運(yùn)算,是基礎(chǔ)題.10、C【解析】

求出集合,,,由此能求出.【詳解】為實(shí)數(shù)集,,,或,.故選:.【點(diǎn)睛】本題考查交集、補(bǔ)集的求法,考查交集、補(bǔ)集的性質(zhì)等基礎(chǔ)知識,考查運(yùn)算求解能力,是基礎(chǔ)題.11、B【解析】

用空間四邊形對①進(jìn)行判斷;根據(jù)公理2對②進(jìn)行判斷;根據(jù)空間角的定義對③進(jìn)行判斷;根據(jù)空間直線位置關(guān)系對④進(jìn)行判斷.【詳解】①中,空間四邊形的四條線段不共面,故①錯誤.②中,由公理2知道,過不在同一條直線上的三點(diǎn),有且只有一個平面,故②正確.③中,由空間角的定義知道,空間中如果一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角相等或互補(bǔ),故③錯誤.④中,空間中,垂直于同一直線的兩條直線可相交,可平行,可異面,故④錯誤.故選:B【點(diǎn)睛】本小題考查空間點(diǎn),線,面的位置關(guān)系及其相關(guān)公理,定理及其推論的理解和認(rèn)識;考查空間想象能力,推理論證能力,考查數(shù)形結(jié)合思想,化歸與轉(zhuǎn)化思想.12、D【解析】

直接利用全稱命題的否定是特稱命題寫出結(jié)果即可.【詳解】因?yàn)槿Q命題的否定是特稱命題,所以,命題:,,則為:,.故本題答案為D.【點(diǎn)睛】本題考查命題的否定,特稱命題與全稱命題的否定關(guān)系,是基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

根據(jù)的展開式中第項(xiàng)與第項(xiàng)的二項(xiàng)式系數(shù)相等,得到,再利用組合數(shù)公式求解.【詳解】因?yàn)榈恼归_式中第項(xiàng)與第項(xiàng)的二項(xiàng)式系數(shù)相等,所以,即,所以,即,解得.故答案為:10【點(diǎn)睛】本題主要考查二項(xiàng)式的系數(shù),還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.14、充分不必要【解析】

由余弦的二倍角公式可得,即或,即可判斷命題的關(guān)系.【詳解】由,所以或,所以“”是“”的充分不必要條件.故答案為:充分不必要【點(diǎn)睛】本題考查命題的充分條件與必要條件的判斷,考查余弦的二倍角公式的應(yīng)用.15、【解析】解答:由圓的方程可得圓心C的坐標(biāo)為(2,2),半徑等于1.由M(a,b),則|MN|2=(a?2)2+(b?2)2?12=a2+b2?4a?4b+7,|MO|2=a2+b2.由|MN|=|MO|,得a2+b2?4a?4b+7=a2+b2.整理得:4a+4b?7=0.∴a,b滿足的關(guān)系為:4a+4b?7=0.求|MN|的最小值,就是求|MO|的最小值.在直線4a+4b?7=0上取一點(diǎn)到原點(diǎn)距離最小,由“垂線段最短”得,直線OM垂直直線4a+4b?7=0,由點(diǎn)到直線的距離公式得:MN的最小值為:.16、【解析】

由二項(xiàng)式系數(shù)性質(zhì)求出,由二項(xiàng)展開式通項(xiàng)公式得出常數(shù)項(xiàng)的項(xiàng)數(shù),從而得常數(shù)項(xiàng).【詳解】由題意,.展開式通項(xiàng)為,由得,∴常數(shù)項(xiàng)為.故答案為:.【點(diǎn)睛】本題考查二項(xiàng)式定理,考查二項(xiàng)式系數(shù)的性質(zhì),掌握二項(xiàng)展開式通項(xiàng)公式是解題關(guān)鍵.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解析】

(1)先判斷得到隨機(jī)變量的所有可能取值,然后根據(jù)古典概型概率公式和組合數(shù)計算得到相應(yīng)的概率,進(jìn)而得到分布列和期望.(2)由于去掉年的數(shù)據(jù)后不影響的值,可根據(jù)表中數(shù)據(jù)求出;然后再根據(jù)去掉年的數(shù)據(jù)后所剩數(shù)據(jù)求出即可得到回歸直線方程.【詳解】(1)由數(shù)據(jù)可知,,,,,五個年份考核優(yōu)秀.由題意的所有可能取值為,,,,,,,.故的分布列為:所以.(2)因?yàn)?,所以去掉年的?shù)據(jù)后不影響的值,所以.又去掉年的數(shù)據(jù)之后,所以,從而回歸方程為:.【點(diǎn)睛】求線性回歸方程時要涉及到大量的計算,所以在解題時要注意運(yùn)算的合理性和正確性,對于題目中給出的中間數(shù)據(jù)要合理利用.本題考查概率和統(tǒng)計的結(jié)合,這也是高考中常出現(xiàn)的題型,屬于基礎(chǔ)題.18、;.【解析】

利用正弦定理化簡求值即可;利用兩角和差的正弦函數(shù)的化簡公式,結(jié)合正弦定理求出的值.【詳解】解:,由正弦定理得:,,,,,又,為三角形內(nèi)角,故,,則,故,;(2)平分,設(shè),則,,,,則,,又,則在中,由正弦定理:,.【點(diǎn)睛】本題考查正弦定理和兩角和差的正弦函數(shù)的化簡公式,二倍角公式,考查運(yùn)算能力,屬于基礎(chǔ)題.19、(1)見解析(2)【解析】

(1)根據(jù)題目所給遞推關(guān)系式得到,由此證得數(shù)列為等比數(shù)列.(2)由(1)求得數(shù)列的通項(xiàng)公式,判斷出,由此利用裂項(xiàng)求和法求得數(shù)列的前項(xiàng)和.【詳解】(1)所以數(shù)列是以3為首項(xiàng),以3為公比的等比數(shù)列.(2)由(1)知,∴為常數(shù)列,且,∴,∴∴【點(diǎn)睛】本小題主要考查根據(jù)遞推關(guān)系式證明等比數(shù)列,考查裂項(xiàng)求和法,屬于中檔題.20、(1)x2=4y.(2).【解析】試題解析:(Ⅰ)設(shè)點(diǎn)P(x0,),由x2=2py(p>0)得,y=,求導(dǎo)y′=,因?yàn)橹本€PQ的斜率為1,所以=1且x0--√2=0,解得p=2,所以拋物線C1的方程為x2=4y.(Ⅱ)因?yàn)辄c(diǎn)P處的切線方程為:y-=(x-x0),即2x0x-2py-x02=0,∴OQ的方程為y=-x根據(jù)切線與圓切,得d=r,即,化簡得x04=4x02+4p2,由方程組,解得Q(,),所以|PQ|=√1+k2|xP-xQ|=點(diǎn)F(0,)到切線PQ的距離是d=,所以S1==,S2=,而由x04=4x02+4p2知,4p2=x04-4x02>0,得|x0|>2,所以==+1≥2+1,當(dāng)且僅當(dāng)時取“=”號,即x02=4+2,此時,p=.所以的最小值為2+1.考點(diǎn):求拋物線的方程,與拋物線有關(guān)的最值問題.21、(1)1;(2)5.【解析】

(1)由同角三角函數(shù)關(guān)系求得,再由兩角差的正弦公式求得,最后由正弦定理構(gòu)建方程,求得答案.(2)在中,由正弦定理構(gòu)建方程求得AB,再由任意三角形的面積公式構(gòu)建方程求得BC,最后由余弦定理構(gòu)建方程求得AC.【詳解】

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論