2023-2024學(xué)年臨夏市重點(diǎn)中學(xué)高三下學(xué)期一模考試數(shù)學(xué)試題含解析_第1頁
2023-2024學(xué)年臨夏市重點(diǎn)中學(xué)高三下學(xué)期一??荚嚁?shù)學(xué)試題含解析_第2頁
2023-2024學(xué)年臨夏市重點(diǎn)中學(xué)高三下學(xué)期一??荚嚁?shù)學(xué)試題含解析_第3頁
2023-2024學(xué)年臨夏市重點(diǎn)中學(xué)高三下學(xué)期一??荚嚁?shù)學(xué)試題含解析_第4頁
2023-2024學(xué)年臨夏市重點(diǎn)中學(xué)高三下學(xué)期一??荚嚁?shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年臨夏市重點(diǎn)中學(xué)高三下學(xué)期一模考試數(shù)學(xué)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知數(shù)列是公差為的等差數(shù)列,且成等比數(shù)列,則()A.4 B.3 C.2 D.12.過雙曲線的左焦點(diǎn)作直線交雙曲線的兩天漸近線于,兩點(diǎn),若為線段的中點(diǎn),且(為坐標(biāo)原點(diǎn)),則雙曲線的離心率為()A. B. C. D.3.已知復(fù)數(shù),,則()A. B. C. D.4.若函數(shù)的定義域?yàn)镸={x|-2≤x≤2},值域?yàn)镹={y|0≤y≤2},則函數(shù)的圖像可能是()A. B. C. D.5.已知復(fù)數(shù)z,則復(fù)數(shù)z的虛部為()A. B. C.i D.i6.定義在上的奇函數(shù)滿足,若,,則()A. B.0 C.1 D.27.已知集合,定義集合,則等于()A. B.C. D.8.將函數(shù)的圖像向左平移個(gè)單位長度后,得到的圖像關(guān)于坐標(biāo)原點(diǎn)對(duì)稱,則的最小值為()A. B. C. D.9.如圖是二次函數(shù)的部分圖象,則函數(shù)的零點(diǎn)所在的區(qū)間是()A. B. C. D.10.若向量,,則與共線的向量可以是()A. B. C. D.11.已知函數(shù),以下結(jié)論正確的個(gè)數(shù)為()①當(dāng)時(shí),函數(shù)的圖象的對(duì)稱中心為;②當(dāng)時(shí),函數(shù)在上為單調(diào)遞減函數(shù);③若函數(shù)在上不單調(diào),則;④當(dāng)時(shí),在上的最大值為1.A.1 B.2 C.3 D.412.已知向量與向量平行,,且,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知向量與的夾角為,||=||=1,且⊥(λ),則實(shí)數(shù)_____.14.若雙曲線的離心率為,則雙曲線的漸近線方程為______.15.函數(shù)在區(qū)間上的值域?yàn)開_____.16.已知點(diǎn)是橢圓上一點(diǎn),過點(diǎn)的一條直線與圓相交于兩點(diǎn),若存在點(diǎn),使得,則橢圓的離心率取值范圍為_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)寫出的普通方程和的直角坐標(biāo)方程;(2)設(shè)點(diǎn)在上,點(diǎn)在上,求的最小值以及此時(shí)的直角坐標(biāo).18.(12分)在三角形中,角,,的對(duì)邊分別為,,,若.(Ⅰ)求角;(Ⅱ)若,,求.19.(12分)已知在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸且取相同的單位長度建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線與直線的直角坐標(biāo)方程;(2)若曲線與直線交于兩點(diǎn),求的值.20.(12分)一酒企為擴(kuò)大生產(chǎn)規(guī)模,決定新建一個(gè)底面為長方形的室內(nèi)發(fā)酵館,發(fā)酵館內(nèi)有一個(gè)無蓋長方體發(fā)酵池,其底面為長方形(如圖所示),其中.結(jié)合現(xiàn)有的生產(chǎn)規(guī)模,設(shè)定修建的發(fā)酵池容積為450米,深2米.若池底和池壁每平方米的造價(jià)分別為200元和150元,發(fā)酵池造價(jià)總費(fèi)用不超過65400元(1)求發(fā)酵池邊長的范圍;(2)在建發(fā)酵館時(shí),發(fā)酵池的四周要分別留出兩條寬為4米和米的走道(為常數(shù)).問:發(fā)酵池的邊長如何設(shè)計(jì),可使得發(fā)酵館占地面積最小.21.(12分)已知點(diǎn),且,滿足條件的點(diǎn)的軌跡為曲線.(1)求曲線的方程;(2)是否存在過點(diǎn)的直線,直線與曲線相交于兩點(diǎn),直線與軸分別交于兩點(diǎn),使得?若存在,求出直線的方程;若不存在,請(qǐng)說明理由.22.(10分)已知橢圓經(jīng)過點(diǎn),離心率為.(1)求橢圓的方程;(2)經(jīng)過點(diǎn)且斜率存在的直線交橢圓于兩點(diǎn),點(diǎn)與點(diǎn)關(guān)于坐標(biāo)原點(diǎn)對(duì)稱.連接.求證:存在實(shí)數(shù),使得成立.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】

根據(jù)等差數(shù)列和等比數(shù)列公式直接計(jì)算得到答案.【詳解】由成等比數(shù)列得,即,已知,解得.故選:.【點(diǎn)睛】本題考查了等差數(shù)列,等比數(shù)列的基本量的計(jì)算,意在考查學(xué)生的計(jì)算能力.2、C【解析】由題意可得雙曲線的漸近線的方程為.∵為線段的中點(diǎn),∴,則為等腰三角形.∴由雙曲線的的漸近線的性質(zhì)可得∴∴,即.∴雙曲線的離心率為故選C.點(diǎn)睛:本題考查了橢圓和雙曲線的定義和性質(zhì),考查了離心率的求解,同時(shí)涉及到橢圓的定義和雙曲線的定義及三角形的三邊的關(guān)系應(yīng)用,對(duì)于求解曲線的離心率(或離心率的取值范圍),常見有兩種方法:①求出,代入公式;②只需要根據(jù)一個(gè)條件得到關(guān)于的齊次式,轉(zhuǎn)化為的齊次式,然后轉(zhuǎn)化為關(guān)于的方程(不等式),解方程(不等式),即可得(的取值范圍).3、B【解析】分析:利用的恒等式,將分子、分母同時(shí)乘以,化簡整理得詳解:,故選B點(diǎn)睛:復(fù)數(shù)問題是高考數(shù)學(xué)中的??紗栴},屬于得分題,主要考查的方面有:復(fù)數(shù)的分類、復(fù)數(shù)的幾何意義、復(fù)數(shù)的模、共軛復(fù)數(shù)以及復(fù)數(shù)的乘除運(yùn)算,在運(yùn)算時(shí)注意符號(hào)的正、負(fù)問題.4、B【解析】因?yàn)閷?duì)A不符合定義域當(dāng)中的每一個(gè)元素都有象,即可排除;對(duì)B滿足函數(shù)定義,故符合;對(duì)C出現(xiàn)了定義域當(dāng)中的一個(gè)元素對(duì)應(yīng)值域當(dāng)中的兩個(gè)元素的情況,不符合函數(shù)的定義,從而可以否定;對(duì)D因?yàn)橹涤虍?dāng)中有的元素沒有原象,故可否定.故選B.5、B【解析】

利用復(fù)數(shù)的運(yùn)算法則、虛部的定義即可得出【詳解】,則復(fù)數(shù)z的虛部為.故選:B.【點(diǎn)睛】本題考查了復(fù)數(shù)的運(yùn)算法則、虛部的定義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.6、C【解析】

首先判斷出是周期為的周期函數(shù),由此求得所求表達(dá)式的值.【詳解】由已知為奇函數(shù),得,而,所以,所以,即的周期為.由于,,,所以,,,.所以,又,所以.故選:C【點(diǎn)睛】本小題主要考查函數(shù)的奇偶性和周期性,屬于基礎(chǔ)題.7、C【解析】

根據(jù)定義,求出,即可求出結(jié)論.【詳解】因?yàn)榧?,所以,則,所以.故選:C.【點(diǎn)睛】本題考查集合的新定義運(yùn)算,理解新定義是解題的關(guān)鍵,屬于基礎(chǔ)題.8、B【解析】

由余弦的二倍角公式化簡函數(shù)為,要想在括號(hào)內(nèi)構(gòu)造變?yōu)檎液瘮?shù),至少需要向左平移個(gè)單位長度,即為答案.【詳解】由題可知,對(duì)其向左平移個(gè)單位長度后,,其圖像關(guān)于坐標(biāo)原點(diǎn)對(duì)稱故的最小值為故選:B【點(diǎn)睛】本題考查三角函數(shù)圖象性質(zhì)與平移變換,還考查了余弦的二倍角公式逆運(yùn)用,屬于簡單題.9、B【解析】

根據(jù)二次函數(shù)圖象的對(duì)稱軸得出范圍,軸截距,求出的范圍,判斷在區(qū)間端點(diǎn)函數(shù)值正負(fù),即可求出結(jié)論.【詳解】∵,結(jié)合函數(shù)的圖象可知,二次函數(shù)的對(duì)稱軸為,,,∵,所以在上單調(diào)遞增.又因?yàn)?,所以函?shù)的零點(diǎn)所在的區(qū)間是.故選:B.【點(diǎn)睛】本題考查二次函數(shù)的圖象及函數(shù)的零點(diǎn),屬于基礎(chǔ)題.10、B【解析】

先利用向量坐標(biāo)運(yùn)算求出向量,然后利用向量平行的條件判斷即可.【詳解】故選B【點(diǎn)睛】本題考查向量的坐標(biāo)運(yùn)算和向量平行的判定,屬于基礎(chǔ)題,在解題中要注意橫坐標(biāo)與橫坐標(biāo)對(duì)應(yīng),縱坐標(biāo)與縱坐標(biāo)對(duì)應(yīng),切不可錯(cuò)位.11、C【解析】

逐一分析選項(xiàng),①根據(jù)函數(shù)的對(duì)稱中心判斷;②利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性;③先求函數(shù)的導(dǎo)數(shù),若滿足條件,則極值點(diǎn)必在區(qū)間;④利用導(dǎo)數(shù)求函數(shù)在給定區(qū)間的最值.【詳解】①為奇函數(shù),其圖象的對(duì)稱中心為原點(diǎn),根據(jù)平移知識(shí),函數(shù)的圖象的對(duì)稱中心為,正確.②由題意知.因?yàn)楫?dāng)時(shí),,又,所以在上恒成立,所以函數(shù)在上為單調(diào)遞減函數(shù),正確.③由題意知,當(dāng)時(shí),,此時(shí)在上為增函數(shù),不合題意,故.令,解得.因?yàn)樵谏喜粏握{(diào),所以在上有解,需,解得,正確.④令,得.根據(jù)函數(shù)的單調(diào)性,在上的最大值只可能為或.因?yàn)?,,所以最大值?4,結(jié)論錯(cuò)誤.故選:C【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,極值,最值,意在考查基本的判斷方法,屬于基礎(chǔ)題型.12、B【解析】

設(shè),根據(jù)題意得出關(guān)于、的方程組,解出這兩個(gè)未知數(shù)的值,即可得出向量的坐標(biāo).【詳解】設(shè),且,,由得,即,①,由,②,所以,解得,因此,.故選:B.【點(diǎn)睛】本題考查向量坐標(biāo)的求解,涉及共線向量的坐標(biāo)表示和向量數(shù)量積的坐標(biāo)運(yùn)算,考查計(jì)算能力,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】

根據(jù)條件即可得出,由即可得出,進(jìn)行數(shù)量積的運(yùn)算即可求出λ.【詳解】∵向量與的夾角為,||=||=1,且;∴;∴λ=1.故答案為:1.【點(diǎn)睛】考查向量數(shù)量積的運(yùn)算及計(jì)算公式,以及向量垂直的充要條件.14、【解析】

利用,得到的關(guān)系式,然后代入雙曲線的漸近線方程即可求解.【詳解】因?yàn)殡p曲線的離心率為,所以,即,因?yàn)殡p曲線的漸近線方程為,所以雙曲線的漸近線方程為.故答案為:【點(diǎn)睛】本題考查雙曲線的幾何性質(zhì);考查運(yùn)算求解能力;熟練掌握雙曲線的幾何性質(zhì)是求解本題的關(guān)鍵;屬于基礎(chǔ)題.15、【解析】

由二倍角公式降冪,再由兩角和的正弦公式化函數(shù)為一個(gè)角的一個(gè)三角函數(shù)形式,結(jié)合正弦函數(shù)性質(zhì)可求得值域.【詳解】,,則,.故答案為:.【點(diǎn)睛】本題考查三角恒等變換(二倍角公式、兩角和的正弦公式),考查正弦函數(shù)的的單調(diào)性和最值.求解三角函數(shù)的性質(zhì)的性質(zhì)一般都需要用三角恒等變換化函數(shù)為一個(gè)角的一個(gè)三角函數(shù)形式,然后結(jié)合正弦函數(shù)的性質(zhì)得出結(jié)論.16、【解析】

設(shè),設(shè)出直線AB的參數(shù)方程,利用參數(shù)的幾何意義可得,由題意得到,據(jù)此求得離心率的取值范圍.【詳解】設(shè),直線AB的參數(shù)方程為,(為參數(shù))代入圓,化簡得:,,,,存在點(diǎn),使得,,即,,,,故答案為:【點(diǎn)睛】本題主要考查了橢圓離心率取值范圍的求解,考查直線、圓與橢圓的綜合運(yùn)用,考查直線參數(shù)方程的運(yùn)用,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1):,:;(2),此時(shí).【解析】試題分析:(1)的普通方程為,的直角坐標(biāo)方程為;(2)由題意,可設(shè)點(diǎn)的直角坐標(biāo)為到的距離當(dāng)且僅當(dāng)時(shí),取得最小值,最小值為,此時(shí)的直角坐標(biāo)為.試題解析:(1)的普通方程為,的直角坐標(biāo)方程為.(2)由題意,可設(shè)點(diǎn)的直角坐標(biāo)為,因?yàn)槭侵本€,所以的最小值即為到的距離的最小值,.當(dāng)且僅當(dāng)時(shí),取得最小值,最小值為,此時(shí)的直角坐標(biāo)為.考點(diǎn):坐標(biāo)系與參數(shù)方程.【方法點(diǎn)睛】參數(shù)方程與普通方程的互化:把參數(shù)方程化為普通方程,需要根據(jù)其結(jié)構(gòu)特征,選取適當(dāng)?shù)南麉⒎椒?,常見的消參方法有:代入消參法;加減消參法;平方和(差)消參法;乘法消參法;混合消參法等.把曲線的普通方程化為參數(shù)方程的關(guān)鍵:一是適當(dāng)選取參數(shù);二是確?;セ昂蠓匠痰牡葍r(jià)性.注意方程中的參數(shù)的變化范圍.18、(Ⅰ)(Ⅱ)8【解析】

(Ⅰ)由余弦定理可得,即可求出A,(Ⅱ)根據(jù)同角的三角函數(shù)的關(guān)系和兩角和的正弦公式和正弦定理即可求出.【詳解】(Ⅰ)由余弦定理,所以,所以,即,因?yàn)椋?;(Ⅱ)因?yàn)?,所以,因?yàn)?,,由正弦定理得,所?【點(diǎn)睛】本題考查利用正弦定理與余弦定理解三角形,屬于簡單題.19、(1)曲線的直角坐標(biāo)方程為;直線的直角坐標(biāo)方程為(2)【解析】

(1)由公式可化極坐標(biāo)方程為直角坐標(biāo)方程,消參法可化參數(shù)方程為普通方程;(2)聯(lián)立兩曲線方程,解方程組得兩交點(diǎn)坐標(biāo),從而得兩點(diǎn)間距離.【詳解】解:(1)曲線的直角坐標(biāo)方程為直線的直角坐標(biāo)方程為(2)據(jù)解,得或【點(diǎn)睛】本題考查極坐標(biāo)與直角坐標(biāo)的互化,考查參數(shù)方程與普通方程的互化,屬于基礎(chǔ)題.20、(1)(2)當(dāng)時(shí),,米時(shí),發(fā)酵館的占地面積最?。划?dāng)時(shí),時(shí),發(fā)酵館的占地面積最??;當(dāng)時(shí),米時(shí),發(fā)酵館的占地面積最小.【解析】

(1)設(shè)米,總費(fèi)用為,解即可得解;(2)結(jié)合(1)可得占地面積結(jié)合導(dǎo)函數(shù)分類討論即可求得最值.【詳解】(1)由題意知:矩形面積米,設(shè)米,則米,由題意知:,得,設(shè)總費(fèi)用為,則,解得:,又,故,所以發(fā)酵池邊長的范圍是不小于15米,且不超過25米;(2)設(shè)發(fā)酵館的占地面積為由(1)知:,①時(shí),,在上遞增,則,即米時(shí),發(fā)酵館的占地面積最小;②時(shí),,在上遞減,則,即米時(shí),發(fā)酵館的占地面積最??;③時(shí),時(shí),,遞減;時(shí),遞增,因此,即時(shí),發(fā)酵館的占地面積最??;綜上所述:當(dāng)時(shí),,米時(shí),發(fā)酵館的占地面積最??;當(dāng)時(shí),時(shí),發(fā)酵館的占地面積最?。划?dāng)時(shí),米時(shí),發(fā)酵館的占地面積最小.【點(diǎn)睛】此題考查函數(shù)模型的應(yīng)用,關(guān)鍵在于根據(jù)題意恰當(dāng)?shù)亟⒛P?,利用函?shù)性質(zhì)討論最值取得的情況.21、(1)(2)存在,或.【解析】

(1)由得看成到兩定點(diǎn)的和為定值,滿足橢圓定義,用定義可解曲線的方程.(2)先討論斜率不存在情況是否符合題意,當(dāng)直線的斜率存在時(shí),設(shè)直線點(diǎn)斜式方程,由,可得,再直線與橢圓聯(lián)解,利用根的判別式得到關(guān)于的一元二次方程求解.【詳解】解:設(shè),由,,可得,即為,由,可得的軌跡是以為焦點(diǎn),且的橢圓,由,可得,可得曲線的方程為;假設(shè)存在過點(diǎn)的直線l符合題意.當(dāng)直線的斜率不存在,設(shè)方程為,可得為短軸的兩個(gè)端點(diǎn),不成立;當(dāng)直線的斜率存在時(shí),設(shè)方程為,由,可得,即,可得,化為,由可得,由在橢圓內(nèi),可得直線與橢圓相交,,則化為,即為,解得,所以存在直線符合題意,且方程為或.【點(diǎn)睛】本題考查求軌跡方程及直線與圓錐曲線位置關(guān)系問題.(1)定義法求軌跡方程的思路:應(yīng)用定義法求軌跡方程的關(guān)鍵在于由已知條件推出關(guān)于動(dòng)點(diǎn)的等量關(guān)系式,由等量關(guān)系結(jié)合曲線定義判斷是何種曲線,再設(shè)出標(biāo)準(zhǔn)方程,用待定系數(shù)法求解;(2)解決是否存在直線的問題時(shí)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論