山東省泰安市新泰市重點(diǎn)達(dá)標(biāo)名校2023-2024學(xué)年中考三模數(shù)學(xué)試題含解析_第1頁
山東省泰安市新泰市重點(diǎn)達(dá)標(biāo)名校2023-2024學(xué)年中考三模數(shù)學(xué)試題含解析_第2頁
山東省泰安市新泰市重點(diǎn)達(dá)標(biāo)名校2023-2024學(xué)年中考三模數(shù)學(xué)試題含解析_第3頁
山東省泰安市新泰市重點(diǎn)達(dá)標(biāo)名校2023-2024學(xué)年中考三模數(shù)學(xué)試題含解析_第4頁
山東省泰安市新泰市重點(diǎn)達(dá)標(biāo)名校2023-2024學(xué)年中考三模數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

山東省泰安市新泰市重點(diǎn)達(dá)標(biāo)名校2023-2024學(xué)年中考三模數(shù)學(xué)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖所示,在△ABC中,∠C=90°,AC=4,BC=3,將△ABC繞點(diǎn)A逆時針旋轉(zhuǎn),使點(diǎn)C落在線段AB上的點(diǎn)E處,點(diǎn)B落在點(diǎn)D處,則BD兩點(diǎn)間的距離為()A.2 B. C. D.2.如圖,在網(wǎng)格中,小正方形的邊長均為1,點(diǎn)A,B,C都在格點(diǎn)上,則∠ABC的正切值是()A. B.2 C. D.3.計算(﹣3)﹣(﹣6)的結(jié)果等于()A.3B.﹣3C.9D.184.有15位同學(xué)參加歌詠比賽,所得的分?jǐn)?shù)互不相同,取得分前8位同學(xué)進(jìn)入決賽.某同學(xué)知道自己的分?jǐn)?shù)后,要判斷自己能否進(jìn)入決賽,他只需知道這15位同學(xué)的()A.平均數(shù) B.中位數(shù) C.眾數(shù) D.方差5.如圖,邊長為2a的等邊△ABC中,M是高CH所在直線上的一個動點(diǎn),連接MB,將線段BM繞點(diǎn)B逆時針旋轉(zhuǎn)60°得到BN,連接HN.則在點(diǎn)M運(yùn)動過程中,線段HN長度的最小值是()A. B.a(chǎn) C. D.6.如圖所示,某辦公大樓正前方有一根高度是15米的旗桿ED,從辦公大樓頂端A測得旗桿頂端E的俯角α是45°,旗桿低端D到大樓前梯砍底邊的距離DC是20米,梯坎坡長BC是12米,梯坎坡度i=1:,則大樓AB的高度約為()(精確到0.1米,參考數(shù)據(jù):)A.30.6米 B.32.1米 C.37.9米 D.39.4米7.如圖,點(diǎn)A為∠α邊上任意一點(diǎn),作AC⊥BC于點(diǎn)C,CD⊥AB于點(diǎn)D,下列用線段比表示cosα的值,錯誤的是(

)A. B. C. D.8.已知,用尺規(guī)作圖的方法在上確定一點(diǎn),使,則符合要求的作圖痕跡是()A. B.C. D.9.如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,AB=c,∠A=α,則CD長為()A.c?sin2α B.c?cos2α C.c?sinα?tanα D.c?sinα?cosα10.一個圓錐的側(cè)面積是12π,它的底面半徑是3,則它的母線長等于()A.2B.3C.4D.6二、填空題(本大題共6個小題,每小題3分,共18分)11.瑞士的一位中學(xué)教師巴爾末從光譜數(shù)據(jù),…中,成功地發(fā)現(xiàn)了其規(guī)律,從而得到了巴爾末公式,繼而打開了光譜奧妙的大門.請你根據(jù)這個規(guī)律寫出第9個數(shù)_____.12.如圖,的半徑為,點(diǎn),,,都在上,,將扇形繞點(diǎn)順時針旋轉(zhuǎn)后恰好與扇形重合,則的長為_____.(結(jié)果保留)13.如圖,點(diǎn)A,B是反比例函數(shù)y=(x>0)圖象上的兩點(diǎn),過點(diǎn)A,B分別作AC⊥x軸于點(diǎn)C,BD⊥x軸于點(diǎn)D,連接OA,BC,已知點(diǎn)C(2,0),BD=2,S△BCD=3,則S△AOC=__.14.若,則=_____.15.若方程x2+2(1+a)x+3a2+4ab+4b2+2=0有實(shí)根,則=_____.16.分解因式:x3-9x三、解答題(共8題,共72分)17.(8分)某村大力發(fā)展經(jīng)濟(jì)作物,其中果樹種植已初具規(guī)模,該村果農(nóng)小張種植了黃桃樹和蘋果樹,為進(jìn)一步優(yōu)化種植結(jié)構(gòu),小張將前年和去年兩種水果的銷售情況進(jìn)行了對比:前年黃桃的市場銷售量為1000千克,銷售均價為6元/千克,去年黃桃的市場銷售量比前年減少了m%(m≠0),銷售均價與前年相同;前年蘋果的市場銷售量為2000千克,銷售均價為4元/千克,去年蘋果的市場銷售量比前年增加了2m%,但銷售均價比前年減少了m%.如果去年黃桃和蘋果的市場銷售總金額與前年黃桃和蘋果的市場銷售總金額相同,求m的值.18.(8分)解方程:.19.(8分)如圖1,在四邊形ABCD中,AD∥BC,AB=CD=13,AD=11,BC=21,E是BC的中點(diǎn),P是AB上的任意一點(diǎn),連接PE,將PE繞點(diǎn)P逆時針旋轉(zhuǎn)90°得到PQ.(1)如圖2,過A點(diǎn),D點(diǎn)作BC的垂線,垂足分別為M,N,求sinB的值;(2)若P是AB的中點(diǎn),求點(diǎn)E所經(jīng)過的路徑弧EQ的長(結(jié)果保留π);(3)若點(diǎn)Q落在AB或AD邊所在直線上,請直接寫出BP的長.20.(8分)八年級(1)班學(xué)生在完成課題學(xué)習(xí)“體質(zhì)健康測試中的數(shù)據(jù)分析”后,利用課外活動時間積極參加體育鍛煉,每位同學(xué)從籃球、跳繩、立定跳遠(yuǎn)、長跑、鉛球中選一項(xiàng)進(jìn)行訓(xùn)練,訓(xùn)練后都進(jìn)行了測試.現(xiàn)將項(xiàng)目選擇情況及訓(xùn)練后籃球定時定點(diǎn)投籃測試成績整理后作出如下統(tǒng)計圖.請你根據(jù)上面提供的信息回答下列問題:扇形圖中跳繩部分的扇形圓心角為度,該班共有學(xué)生人,訓(xùn)練后籃球定時定點(diǎn)投籃平均每個人的進(jìn)球數(shù)是.老師決定從選擇鉛球訓(xùn)練的3名男生和1名女生中任選兩名學(xué)生先進(jìn)行測試,請用列表或畫樹形圖的方法求恰好選中兩名男生的概率.21.(8分)(1)計算:;(2)化簡:.22.(10分)小明參加某個智力競答節(jié)目,答對最后兩道單選題就順利通關(guān).第一道單選題有3個選項(xiàng),第二道單選題有4個選項(xiàng),這兩道題小明都不會,不過小明還有一個“求助”沒有用(使用“求助”可以讓主持人去掉其中一題的一個錯誤選項(xiàng)).如果小明第一題不使用“求助”,那么小明答對第一道題的概率是.如果小明將“求助”留在第二題使用,請用樹狀圖或者列表來分析小明順利通關(guān)的概率.從概率的角度分析,你建議小明在第幾題使用“求助”.(直接寫出答案)23.(12分)如圖,已知點(diǎn)B、E、C、F在一條直線上,AB=DF,AC=DE,∠A=∠D求證:AC∥DE;若BF=13,EC=5,求BC的長.24.(1)|﹣2|+?tan30°+(2018﹣π)0-()-1(2)先化簡,再求值:(﹣1)÷,其中x的值從不等式組的整數(shù)解中選?。?/p>

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】解:連接BD.在△ABC中,∵∠C=90°,AC=4,BC=3,∴AB=2.∵將△ABC繞點(diǎn)A逆時針旋轉(zhuǎn),使點(diǎn)C落在線段AB上的點(diǎn)E處,點(diǎn)B落在點(diǎn)D處,∴AE=4,DE=3,∴BE=2.在Rt△BED中,BD=.故選C.點(diǎn)睛:本題考查了勾股定理和旋轉(zhuǎn)的基本性質(zhì),解決此類問題的關(guān)鍵是掌握旋轉(zhuǎn)的基本性質(zhì),特別是線段之間的關(guān)系.題目整體較為簡單,適合隨堂訓(xùn)練.2、A【解析】分析:連接AC,根據(jù)勾股定理求出AC、BC、AB的長,根據(jù)勾股定理的逆定理得到△ABC是直角三角形,根據(jù)正切的定義計算即可.詳解:連接AC,

由網(wǎng)格特點(diǎn)和勾股定理可知,

AC=,AC2+AB2=10,BC2=10,

∴AC2+AB2=BC2,

∴△ABC是直角三角形,

∴tan∠ABC=.點(diǎn)睛:考查的是銳角三角函數(shù)的定義、勾股定理及其逆定理的應(yīng)用,熟記銳角三角函數(shù)的定義、掌握如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形就是直角三角形是解題的關(guān)鍵.3、A【解析】原式=?3+6=3,故選A4、B【解析】

由中位數(shù)的概念,即最中間一個或兩個數(shù)據(jù)的平均數(shù);可知15人成績的中位數(shù)是第8名的成績.根據(jù)題意可得:參賽選手要想知道自己是否能進(jìn)入前8名,只需要了解自己的成績以及全部成績的中位數(shù),比較即可.【詳解】解:由于15個人中,第8名的成績是中位數(shù),故小方同學(xué)知道了自己的分?jǐn)?shù)后,想知道自己能否進(jìn)入決賽,還需知道這十五位同學(xué)的分?jǐn)?shù)的中位數(shù).故選B.【點(diǎn)睛】此題主要考查統(tǒng)計的有關(guān)知識,主要包括平均數(shù)、中位數(shù)、眾數(shù)的意義.反映數(shù)據(jù)集中程度的統(tǒng)計量有平均數(shù)、中位數(shù)、眾數(shù)等,各有局限性,因此要對統(tǒng)計量進(jìn)行合理的選擇和恰當(dāng)?shù)倪\(yùn)用.5、A【解析】

取CB的中點(diǎn)G,連接MG,根據(jù)等邊三角形的性質(zhì)可得BH=BG,再求出∠HBN=∠MBG,根據(jù)旋轉(zhuǎn)的性質(zhì)可得MB=NB,然后利用“邊角邊”證明∴△MBG≌△NBH,再根據(jù)全等三角形對應(yīng)邊相等可得HN=MG,然后根據(jù)垂線段最短可得MG⊥CH時最短,再根據(jù)∠BCH=30°求解即可.【詳解】如圖,取BC的中點(diǎn)G,連接MG,∵旋轉(zhuǎn)角為60°,∴∠MBH+∠HBN=60°,又∵∠MBH+∠MBC=∠ABC=60°,∴∠HBN=∠GBM,∵CH是等邊△ABC的對稱軸,∴HB=AB,∴HB=BG,又∵M(jìn)B旋轉(zhuǎn)到BN,∴BM=BN,在△MBG和△NBH中,,∴△MBG≌△NBH(SAS),∴MG=NH,根據(jù)垂線段最短,MG⊥CH時,MG最短,即HN最短,此時∵∠BCH=×60°=30°,CG=AB=×2a=a,∴MG=CG=×a=,∴HN=,故選A.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì),等邊三角形的性質(zhì),全等三角形的判定與性質(zhì),垂線段最短的性質(zhì),作輔助線構(gòu)造出全等三角形是解題的關(guān)鍵,也是本題的難點(diǎn).6、D【解析】解:延長AB交DC于H,作EG⊥AB于G,如圖所示,則GH=DE=15米,EG=DH,∵梯坎坡度i=1:,∴BH:CH=1:,設(shè)BH=x米,則CH=x米,在Rt△BCH中,BC=12米,由勾股定理得:,解得:x=6,∴BH=6米,CH=米,∴BG=GH﹣BH=15﹣6=9(米),EG=DH=CH+CD=+20(米),∵∠α=45°,∴∠EAG=90°﹣45°=45°,∴△AEG是等腰直角三角形,∴AG=EG=+20(米),∴AB=AG+BG=+20+9≈39.4(米).故選D.7、D【解析】

根據(jù)銳角三角函數(shù)的定義,余弦是鄰邊比斜邊,可得答案.【詳解】cosα=.故選D.【點(diǎn)睛】熟悉掌握銳角三角函數(shù)的定義是關(guān)鍵.8、D【解析】試題分析:D選項(xiàng)中作的是AB的中垂線,∴PA=PB,∵PB+PC=BC,∴PA+PC=BC.故選D.考點(diǎn):作圖—復(fù)雜作圖.9、D【解析】

根據(jù)銳角三角函數(shù)的定義可得結(jié)論.【詳解】在Rt△ABC中,∠ACB=90°,AB=c,∠A=a,根據(jù)銳角三角函數(shù)的定義可得sinα=,∴BC=c?sinα,∵∠A+∠B=90°,∠DCB+∠B=90°,∴∠DCB=∠A=α在Rt△DCB中,∠CDB=90°,∴cos∠DCB=,∴CD=BC?cosα=c?sinα?cosα,故選D.10、C【解析】設(shè)母線長為R,底面半徑是3cm,則底面周長=6π,側(cè)面積=3πR=12π,

∴R=4cm.故選C.二、填空題(本大題共6個小題,每小題3分,共18分)11、.【解析】

分子的規(guī)律依次是:32,42,52,62,72,82,92…,分母的規(guī)律是:規(guī)律是:5+7=1212+9=2121+11=3232+13=45…,即分子為(n+2)2,分母為n(n+4).【詳解】解:由題可知規(guī)律,第9個數(shù)的分子是(9+2)2=121;第五個的分母是:32+13=45;第六個的分母是:45+15=60;第七個的分母是:60+17=77;第八個的分母是:77+19=96;則第九個的分母是:96+21=1.因而第九個數(shù)是:.故答案為:.【點(diǎn)睛】主要考查了學(xué)生的分析、總結(jié)、歸納能力,規(guī)律型的習(xí)題一般是從所給的數(shù)據(jù)和運(yùn)算方法進(jìn)行分析,從特殊值的規(guī)律上總結(jié)出一般性的規(guī)律.12、.【解析】

根據(jù)題意先利用旋轉(zhuǎn)的性質(zhì)得到∠BOD=120°,則∠AOD=150°,然后根據(jù)弧長公式計算即可.【詳解】解:∵扇形AOB繞點(diǎn)O順時針旋轉(zhuǎn)120°后恰好與扇形COD重合,

∴∠BOD=120°,

∴∠AOD=∠AOB+∠BOD=30°+120°=150°,

∴的長=.

故答案為:.【點(diǎn)睛】本題考查了弧長的計算及旋轉(zhuǎn)的性質(zhì),掌握弧長公式l=(弧長為l,圓心角度數(shù)為n,圓的半徑為R)是解題的關(guān)鍵.13、1.【解析】

由三角形BCD為直角三角形,根據(jù)已知面積與BD的長求出CD的長,由OC+CD求出OD的長,確定出B的坐標(biāo),代入反比例解析式求出k的值,利用反比例函數(shù)k的幾何意義求出三角形AOC面積即可.【詳解】∵BD⊥CD,BD=2,∴S△BCD=BD?CD=2,即CD=2.∵C(2,0),即OC=2,∴OD=OC+CD=2+2=1,∴B(1,2),代入反比例解析式得:k=10,即y=,則S△AOC=1.故答案為1.【點(diǎn)睛】本題考查了反比例函數(shù)系數(shù)k的幾何意義,以及反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,熟練掌握反比例函數(shù)k的幾何意義是解答本題的關(guān)鍵.14、【解析】=.15、【解析】

因?yàn)榉匠逃袑?shí)根,所以△≥0,配方整理得(a+2b)2+(a﹣1)2≤0,再利用非負(fù)性求出a,b的值即可.【詳解】∵方程有實(shí)根,∴△≥0,即△=4(1+a)2﹣4(3a2+4ab+4b2+2)≥0,化簡得:2a2+4ab+4b2﹣2a+1≤0,∴(a+2b)2+(a﹣1)2≤0,而(a+2b)2+(a﹣1)2≥0,∴a+2b=0,a﹣1=0,解得a=1,b=﹣,∴=﹣.故答案為﹣.16、x【解析】試題分析:要將一個多項(xiàng)式分解因式的一般步驟是首先看各項(xiàng)有沒有公因式,若有公因式,則把它提取出來,之后再觀察是否是完全平方公式或平方差公式,若是就考慮用公式法繼續(xù)分解因式。因此,先提取公因式x后繼續(xù)應(yīng)用平方差公式分解即可:x2三、解答題(共8題,共72分)17、m的值是12.1.【解析】

根據(jù)去年黃桃和蘋果的市場銷售總金額與前年黃桃和蘋果的市場銷售總金額相同,可以列出相應(yīng)的方程,從而可以求得m的值【詳解】由題意可得,1000×6+2000×4=1000×(1﹣m%)×6+2000×(1+2m%)×4(1﹣m%)解得,m1=0(舍去),m2=12.1,即m的值是12.1.【點(diǎn)睛】本題考查一元二次方程的應(yīng)用,解答本題的關(guān)鍵是明確題意,列出相應(yīng)的方程,求出m的值,注意解答中是m%,最終求得的是m的值.18、【解析】分析:此題應(yīng)先將原分式方程兩邊同時乘以最簡公分母,則原分式方程可化為整式方程,解出即可.詳解:去分母,得.去括號,得.移項(xiàng),得.合并同類項(xiàng),得.系數(shù)化為1,得.經(jīng)檢驗(yàn),原方程的解為.點(diǎn)睛:本題主要考查分式方程的解法.注意:解分式方程必須檢驗(yàn).19、(1)1213;(2)5π;(3)PB的值為10526或【解析】

(1)如圖1中,作AM⊥CB用M,DN⊥BC于N,根據(jù)題意易證Rt△ABM≌Rt△DCN,再根據(jù)全等三角形的性質(zhì)可得出對應(yīng)邊相等,根據(jù)勾股定理可求出AM的值,即可得出結(jié)論;(2)連接AC,根據(jù)勾股定理求出AC的長,再根據(jù)弧長計算公式即可得出結(jié)論;(3)當(dāng)點(diǎn)Q落在直線AB上時,根據(jù)相似三角形的性質(zhì)可得對應(yīng)邊成比例,即可求出PB的值;當(dāng)點(diǎn)Q在DA的延長線上時,作PH⊥AD交DA的延長線于H,延長HP交BC于G,設(shè)PB=x,則AP=13﹣x,再根據(jù)全等三角形的性質(zhì)可得對應(yīng)邊相等,即可求出PB的值.【詳解】解:(1)如圖1中,作AM⊥CB用M,DN⊥BC于N.∴∠DNM=∠AMN=90°,∵AD∥BC,∴∠DAM=∠AMN=∠DNM=90°,∴四邊形AMND是矩形,∴AM=DN,∵AB=CD=13,∴Rt△ABM≌Rt△DCN,∴BM=CN,∵AD=11,BC=21,∴BM=CN=5,∴AM==12,在Rt△ABM中,sinB==.(2)如圖2中,連接AC.在Rt△ACM中,AC===20,∵PB=PA,BE=EC,∴PE=AC=10,∴的長==5π.(3)如圖3中,當(dāng)點(diǎn)Q落在直線AB上時,∵△EPB∽△AMB,∴==,∴==,∴PB=.如圖4中,當(dāng)點(diǎn)Q在DA的延長線上時,作PH⊥AD交DA的延長線于H,延長HP交BC于G.設(shè)PB=x,則AP=13﹣x.∵AD∥BC,∴∠B=∠HAP,∴PG=x,PH=(13﹣x),∴BG=x,∵△PGE≌△QHP,∴EG=PH,∴﹣x=(13﹣x),∴BP=.綜上所述,滿足條件的PB的值為或.【點(diǎn)睛】本題考查了相似三角形與全等三角形的性質(zhì),解題的關(guān)鍵是熟練的掌握相似三角形與全等三角形的判定與性質(zhì).20、(1)36,40,1;(2).【解析】

(1)先求出跳繩所占比例,再用比例乘以360°即可,用籃球的人數(shù)除以所占比例即可;根據(jù)加權(quán)平均數(shù)的概念計算訓(xùn)練后籃球定時定點(diǎn)投籃人均進(jìn)球數(shù).(2)畫出樹狀圖,根據(jù)概率公式求解即可.【詳解】(1)扇形圖中跳繩部分的扇形圓心角為360°×(1-10%-20%-10%-10%)=36度;

該班共有學(xué)生(2+1+7+4+1+1)÷10%=40人;

訓(xùn)練后籃球定時定點(diǎn)投籃平均每個人的進(jìn)球數(shù)是=1,

故答案為:36,40,1.(2)三名男生分別用A1,A2,A3表示,一名女生用B表示.根據(jù)題意,可畫樹形圖如下:由上圖可知,共有12種等可能的結(jié)果,選中兩名學(xué)生恰好是兩名男生(記為事件M)的結(jié)果有6種,∴P(M)==.21、(1)4+;(2).【解析】

(1)根據(jù)冪的乘方、零指數(shù)冪、特殊角的三角函數(shù)值和絕對值可以解答本題;(3)根據(jù)分式的減法和除法可以解答本題.【詳解】(1)=4+1+|1﹣2×|=4+1+|1﹣|=4+1+﹣1=4+;(2)===.【點(diǎn)睛】本題考查分式的混合運(yùn)算、實(shí)數(shù)的運(yùn)算、零指數(shù)冪、特殊角的三角函數(shù)值和絕對值,解答本題的關(guān)鍵是明確它們各自的計算方法.22、(1);(2);(3)第一題.【解析】

(1)由第一道單選題有3個選項(xiàng),直接利用概率公式求解即可求得答案;(2)畫出樹狀圖,再由樹狀圖求得所有等可能的結(jié)果與小明順利通關(guān)的情況,繼而利用概率公式即可求得答案;(3)由如果在第一題使用“求助”小明順利通關(guān)的概率為:;如果在第二題使用“求助”小明順利通關(guān)的概率為:;即可求得答案.【詳解】(1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論