人教A版高中數(shù)學(xué)(選擇性必修二)同步講義第03講 4.2.2等差數(shù)列的前n項(xiàng)和公式(教師版)_第1頁
人教A版高中數(shù)學(xué)(選擇性必修二)同步講義第03講 4.2.2等差數(shù)列的前n項(xiàng)和公式(教師版)_第2頁
人教A版高中數(shù)學(xué)(選擇性必修二)同步講義第03講 4.2.2等差數(shù)列的前n項(xiàng)和公式(教師版)_第3頁
人教A版高中數(shù)學(xué)(選擇性必修二)同步講義第03講 4.2.2等差數(shù)列的前n項(xiàng)和公式(教師版)_第4頁
人教A版高中數(shù)學(xué)(選擇性必修二)同步講義第03講 4.2.2等差數(shù)列的前n項(xiàng)和公式(教師版)_第5頁
已閱讀5頁,還剩35頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

第03講4.2.2等差數(shù)列的前SKIPIF1<0項(xiàng)和公式課程標(biāo)準(zhǔn)學(xué)習(xí)目標(biāo)①掌握等差數(shù)列前n項(xiàng)和公式及求取思路,熟練掌握等差數(shù)列的五個(gè)量之間的關(guān)系并能由三求二,能用通項(xiàng)與和求通項(xiàng)。②會(huì)利用等差數(shù)列性質(zhì)簡化求和運(yùn)算,會(huì)利用等差數(shù)列前n項(xiàng)和的函數(shù)特征求最值。③能處理與等差數(shù)列相關(guān)的綜合問題。能掌握等差數(shù)列的通項(xiàng)與前n項(xiàng)和的相關(guān)計(jì)算公式,能熟練處理與等差數(shù)列的相關(guān)量之間的關(guān)系,用函數(shù)的思想解決數(shù)列的最大(小)項(xiàng)、和的最大(小)值問題,會(huì)利用等差數(shù)列的性質(zhì)靈活解決與之相關(guān)的問題知識點(diǎn)01:等差數(shù)列的前SKIPIF1<0項(xiàng)和公式1、首項(xiàng)為SKIPIF1<0,末項(xiàng)為SKIPIF1<0的等差數(shù)列的前SKIPIF1<0項(xiàng)和公式SKIPIF1<02、首項(xiàng)為SKIPIF1<0,公差為SKIPIF1<0的等差數(shù)列的前SKIPIF1<0項(xiàng)和公式SKIPIF1<0【即學(xué)即練1】(2023秋·高二課時(shí)練習(xí))已知數(shù)列SKIPIF1<0均為等差數(shù)列.(1)設(shè)SKIPIF1<0,SKIPIF1<0,求SKIPIF1<0;(2)設(shè)SKIPIF1<0,SKIPIF1<0,求SKIPIF1<0;(3)設(shè)SKIPIF1<0,求SKIPIF1<0.【答案】(1)260(2)21.7(3)49【詳解】(1)依題意,SKIPIF1<0.(2)SKIPIF1<0,于是SKIPIF1<0,從而SKIPIF1<0.(3)設(shè)公差為SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,于是SKIPIF1<0,所以SKIPIF1<0.知識點(diǎn)02:等差數(shù)列前SKIPIF1<0項(xiàng)和公式的函數(shù)特征等差數(shù)列前SKIPIF1<0項(xiàng)和公式可變形為SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),它是關(guān)于SKIPIF1<0的二次函數(shù),表示為SKIPIF1<0(SKIPIF1<0,SKIPIF1<0為常數(shù)).知識點(diǎn)03:等差數(shù)列前SKIPIF1<0項(xiàng)和性質(zhì)(1)若數(shù)列SKIPIF1<0是公差為SKIPIF1<0的等差數(shù)列,則數(shù)列SKIPIF1<0也是等差數(shù)列,且公差為SKIPIF1<0(2)設(shè)等差數(shù)列SKIPIF1<0的公差為SKIPIF1<0,SKIPIF1<0為其前SKIPIF1<0項(xiàng)和,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,…組成公差為SKIPIF1<0的等差數(shù)列(3)在等差數(shù)列SKIPIF1<0,SKIPIF1<0中,它們的前SKIPIF1<0項(xiàng)和分別記為SKIPIF1<0則SKIPIF1<0(4)若等差數(shù)列SKIPIF1<0的項(xiàng)數(shù)為SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,SKIPIF1<0。(5)若等差數(shù)列SKIPIF1<0的項(xiàng)數(shù)為SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0【即學(xué)即練2】(2023春·云南曲靖·高二統(tǒng)考期末)等差數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0.【答案】15【詳解】設(shè)SKIPIF1<0,由等差數(shù)列的性質(zhì)可得SKIPIF1<0,又SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0.故答案為:15題型01等差數(shù)列前SKIPIF1<0項(xiàng)和的基本量計(jì)算【典例1】(2023秋·天津和平·高三天津市第二十一中學(xué)??茧A段練習(xí))等差數(shù)列SKIPIF1<0中,SKIPIF1<0.(1)求數(shù)列的通項(xiàng)公式;(2)若SKIPIF1<0,求n.【答案】(1)SKIPIF1<0,SKIPIF1<0.(2)11【詳解】(1)設(shè)公差為SKIPIF1<0,則由題意可得SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0;(2)由(1)可知SKIPIF1<0,即SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0.【典例2】(2023·全國·高二隨堂練習(xí))已知數(shù)列SKIPIF1<0為等差數(shù)列,前n項(xiàng)和為SKIPIF1<0,求解下列問題:(1)若SKIPIF1<0,SKIPIF1<0,求SKIPIF1<0;(2)若SKIPIF1<0,SKIPIF1<0,求SKIPIF1<0;(3)若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,求n.【答案】(1)2(2)1596(3)11【詳解】(1)由題意知數(shù)列SKIPIF1<0為等差數(shù)列,SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0公差為d,故SKIPIF1<0,解得SKIPIF1<0;(2)數(shù)列SKIPIF1<0為等差數(shù)列,SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0公差為d,故SKIPIF1<0,解得SKIPIF1<0,則SKIPIF1<0;(3)由題意知數(shù)列SKIPIF1<0為等差數(shù)列,SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0公差為d,則SKIPIF1<0,解得SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍去),故SKIPIF1<0.【變式1】(2023·全國·高二隨堂練習(xí))一個(gè)物體第1s下落4.90m,以后每秒比前一秒多下落9.80m.(1)如果它從山頂下落,經(jīng)過5s到達(dá)地面,那么這山的高度是多少米?(2)如果它從1960m的高空下落到地面,要經(jīng)過多長時(shí)間?【答案】(1)SKIPIF1<0(2)SKIPIF1<0【詳解】(1)由題意可知,物體每秒下落的高度構(gòu)成等差數(shù)列,設(shè)該等差數(shù)列為SKIPIF1<0,前SKIPIF1<0項(xiàng)和為SKIPIF1<0,則SKIPIF1<0,公差SKIPIF1<0,所以SKIPIF1<0,故這山的高度是SKIPIF1<0.(2)由(1)可得,SKIPIF1<0,解得SKIPIF1<0(負(fù)值舍去),所以要經(jīng)過SKIPIF1<0落地.【變式2】(2023·全國·高二課堂例題)已知數(shù)列SKIPIF1<0是等差數(shù)列.(1)若SKIPIF1<0,SKIPIF1<0,求SKIPIF1<0;(2)若SKIPIF1<0,SKIPIF1<0,求SKIPIF1<0;(3)若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,求n.【答案】(1)2700(2)SKIPIF1<0(3)SKIPIF1<0.【詳解】(1)因?yàn)镾KIPIF1<0,SKIPIF1<0,根據(jù)公式SKIPIF1<0,可得SKIPIF1<0.(2)因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.根據(jù)公式SKIPIF1<0,可得SKIPIF1<0.(3)把SKIPIF1<0,SKIPIF1<0,SKIPIF1<0代入SKIPIF1<0,得SKIPIF1<0.整理,得SKIPIF1<0.解得SKIPIF1<0,或SKIPIF1<0(舍去).所以SKIPIF1<0.題型02利用等差數(shù)列前SKIPIF1<0項(xiàng)和公式判斷【典例1】(2023春·湖北十堰·高二校聯(lián)考階段練習(xí))設(shè)數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,點(diǎn)SKIPIF1<0均在函數(shù)SKIPIF1<0的圖象上,則數(shù)列SKIPIF1<0的通項(xiàng)公式SKIPIF1<0.【答案】SKIPIF1<0【詳解】解:依題意得SKIPIF1<0,即SKIPIF1<0,所以數(shù)列SKIPIF1<0為等差數(shù)列,且SKIPIF1<0,SKIPIF1<0,設(shè)其公差為SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<0.【典例2】(2023春·高二課時(shí)練習(xí))已知一個(gè)數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),求證:該數(shù)列SKIPIF1<0是等差數(shù)列;(2)若數(shù)列SKIPIF1<0是等差數(shù)列,求SKIPIF1<0滿足條件.【答案】(1)證明見解析(2)SKIPIF1<0【詳解】(1)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0,此時(shí)SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,可得數(shù)列SKIPIF1<0是公差為SKIPIF1<0的等差數(shù)列.(2)SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,可得SKIPIF1<0時(shí),數(shù)列SKIPIF1<0是公差為SKIPIF1<0的等差數(shù)列,若數(shù)列SKIPIF1<0是等差數(shù)列,則SKIPIF1<0,所以SKIPIF1<0.【變式1】(2023秋·重慶九龍坡·高二重慶市渝高中學(xué)校校考期末)已知數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0.(1)求證:SKIPIF1<0是等差數(shù)列;【答案】(1)證明見解析;【詳解】(1)由題意得①若SKIPIF1<0,則SKIPIF1<0,②若SKIPIF1<0,則SKIPIF1<0,經(jīng)檢驗(yàn)滿足上式.故SKIPIF1<0,由SKIPIF1<0可知,數(shù)列SKIPIF1<0是首項(xiàng)為23,公差為SKIPIF1<0的等差數(shù)列.【變式2】(2023·高二課時(shí)練習(xí))已知數(shù)列SKIPIF1<0的前n項(xiàng)和SKIPIF1<0SKIPIF1<0求數(shù)列SKIPIF1<0的通項(xiàng)公式SKIPIF1<0;SKIPIF1<0求證:數(shù)列SKIPIF1<0是等差數(shù)列.【答案】(1)SKIPIF1<0;(2)見解析【詳解】SKIPIF1<0解:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,滿足SKIPIF1<0,即數(shù)列SKIPIF1<0的通項(xiàng)公式SKIPIF1<0.SKIPIF1<0證明:SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0為常數(shù),則數(shù)列SKIPIF1<0是等差數(shù)列.題型03等差數(shù)列片段和性質(zhì)【典例1】(2023秋·甘肅金昌·高二永昌縣第一高級中學(xué)??茧A段練習(xí))設(shè)等差數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】在等差數(shù)列SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等差數(shù)列,即SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,于是SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0.故選:A【典例2】(2023·全國·高三專題練習(xí))設(shè)等差數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0等于(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】因?yàn)榈炔顢?shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,則SKIPIF1<0、SKIPIF1<0、SKIPIF1<0為等差數(shù)列,其公差為SKIPIF1<0,因此,SKIPIF1<0.故答案為:SKIPIF1<0.【典例3】(2023·全國·高二專題練習(xí))等差數(shù)列SKIPIF1<0的前n項(xiàng)和SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0(

)A.10 B.20 C.30 D.15【答案】A【詳解】由等差數(shù)列SKIPIF1<0有SKIPIF1<0成等差數(shù)列,設(shè)為d,則SKIPIF1<0,故SKIPIF1<0.故選:A【變式1】(2023秋·天津河?xùn)|·高三天津市第四十五中學(xué)??茧A段練習(xí))在等差數(shù)列SKIPIF1<0中,已知SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(

)A.90 B.40 C.50 D.60【答案】D【詳解】因?yàn)镾KIPIF1<0為等差數(shù)列,所以SKIPIF1<0成等差數(shù)列,SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0.故選:D【變式2】(2023秋·福建寧德·高二福建省寧德第一中學(xué)??茧A段練習(xí))設(shè)等差數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】解:由等差數(shù)列的性質(zhì)可知,SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0成等差數(shù)列,且該數(shù)列的公差為SKIPIF1<0,則SKIPIF1<0,所以,SKIPIF1<0,因此,SKIPIF1<0.故選:D.【變式3】(2023秋·上海閔行·高二??茧A段練習(xí))已知等差數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,滿足SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0.【答案】SKIPIF1<0【詳解】因?yàn)镾KIPIF1<0是等差數(shù)列,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等差數(shù)列,則SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0.故答案為:SKIPIF1<0.題型04比值問題(含同角標(biāo)和不同角標(biāo))【典例1】(2023秋·天津武清·高三天津市武清區(qū)城關(guān)中學(xué)??茧A段練習(xí))等差數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和分別是SKIPIF1<0與SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0.【答案】SKIPIF1<0/SKIPIF1<0【詳解】由等差數(shù)列的前SKIPIF1<0項(xiàng)和公式,得SKIPIF1<0,又由等差數(shù)列的性質(zhì),得SKIPIF1<0,而SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<0【典例2】(2023·全國·高三專題練習(xí))設(shè)等差數(shù)列SKIPIF1<0、SKIPIF1<0的前SKIPIF1<0項(xiàng)和分別為SKIPIF1<0、SKIPIF1<0,若對任意的SKIPIF1<0,都有SKIPIF1<0,則SKIPIF1<0.【答案】SKIPIF1<0【詳解】SKIPIF1<0,由于SKIPIF1<0,故答案為:SKIPIF1<0【典例3】(2023春·黑龍江鶴崗·高二鶴崗一中??计谥校┮阎炔顢?shù)列SKIPIF1<0和SKIPIF1<0的前SKIPIF1<0項(xiàng)和為分別為SKIPIF1<0和SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0的值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,故選:B【變式1】(2023春·遼寧阜新·高二??计谥校┮阎炔顢?shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,等差數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,且SKIPIF1<0,求SKIPIF1<0.【答案】SKIPIF1<0【詳解】因?yàn)榈炔顢?shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,等差數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0,故答案為:SKIPIF1<0【變式2】(2023春·湖北·高二統(tǒng)考期末)已知等差數(shù)列SKIPIF1<0,SKIPIF1<0的前SKIPIF1<0項(xiàng)和分別為SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】由已知得SKIPIF1<0,可設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,故選:SKIPIF1<0.【變式3】(2023·全國·高二專題練習(xí))等差數(shù)列SKIPIF1<0,SKIPIF1<0的前SKIPIF1<0項(xiàng)和分別是SKIPIF1<0與SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0;SKIPIF1<0.【答案】SKIPIF1<0/SKIPIF1<0SKIPIF1<0/SKIPIF1<0【詳解】空1:由等差數(shù)列的前SKIPIF1<0項(xiàng)和公式,可得SKIPIF1<0,又由等差數(shù)列的性質(zhì),可得SKIPIF1<0,因?yàn)镾KIPIF1<0,可得SKIPIF1<0.空2:設(shè)SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<0;SKIPIF1<0.題型05等差數(shù)列前SKIPIF1<0項(xiàng)和的最值問題【典例1】(2023春·遼寧朝陽·高二建平縣實(shí)驗(yàn)中學(xué)??茧A段練習(xí))等差數(shù)列SKIPIF1<0中,已知SKIPIF1<0,前n項(xiàng)和為SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0最小時(shí)n的值為(

)A.11 B.11或12 C.12 D.12或13【答案】C【詳解】根據(jù)題意由SKIPIF1<0可得SKIPIF1<0,整理可得SKIPIF1<0.所以SKIPIF1<0,由SKIPIF1<0,SKIPIF1<0可得SKIPIF1<0;由二次函數(shù)性質(zhì)可知,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取最小時(shí).故選:C【典例2】(2023春·遼寧鐵嶺·高二校聯(lián)考期末)記等差數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,已知SKIPIF1<0,SKIPIF1<0.(1)求SKIPIF1<0的通項(xiàng)公式;(2)求SKIPIF1<0以及SKIPIF1<0的最小值.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0,SKIPIF1<0的最小值為SKIPIF1<0.【詳解】(1)設(shè)等差數(shù)列SKIPIF1<0的公差為SKIPIF1<0,由SKIPIF1<0,SKIPIF1<0,得SKIPIF1<0,解得SKIPIF1<0,于是SKIPIF1<0,所以數(shù)列SKIPIF1<0的通項(xiàng)公式是SKIPIF1<0.(2)由(1)知,SKIPIF1<0,顯然SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等號,所以SKIPIF1<0,SKIPIF1<0的最小值為SKIPIF1<0.【典例3】(2023春·甘肅臨夏·高二??茧A段練習(xí))記SKIPIF1<0為等差數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和,已知SKIPIF1<0,SKIPIF1<0.(1)求等差數(shù)列SKIPIF1<0的通項(xiàng)公式;(2)求SKIPIF1<0的最小值及對應(yīng)的n值.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0的最小值為SKIPIF1<0,對應(yīng)SKIPIF1<0.【詳解】(1)等差數(shù)列SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的公差SKIPIF1<0,所以等差數(shù)列SKIPIF1<0的通項(xiàng)公式SKIPIF1<0.(2)由(1)知,等差數(shù)列SKIPIF1<0單調(diào)遞增,由SKIPIF1<0,得SKIPIF1<0,解得SKIPIF1<0,因此數(shù)列SKIPIF1<0前15項(xiàng)均為負(fù)數(shù),從第16項(xiàng)起均為正數(shù),所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取得最小值SKIPIF1<0.【變式1】(多選)(2023春·河南南陽·高二校考階段練習(xí))設(shè)數(shù)列SKIPIF1<0是公差為d的等差數(shù)列,SKIPIF1<0是其前n項(xiàng)和,SKIPIF1<0且SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0或SKIPIF1<0為SKIPIF1<0的最大值 D.SKIPIF1<0【答案】BCD【詳解】根據(jù)題意可知SKIPIF1<0,由SKIPIF1<0可得SKIPIF1<0,即SKIPIF1<0,又SKIPIF1<0,所以可得公差SKIPIF1<0;所以A錯(cuò)誤,B正確;易知SKIPIF1<0是關(guān)于SKIPIF1<0的一元二次函數(shù),且二次函數(shù)圖象的對稱軸為直線SKIPIF1<0,開口向下,又因?yàn)镾KIPIF1<0為整數(shù),所以當(dāng)SKIPIF1<0且SKIPIF1<0時(shí),SKIPIF1<0是單調(diào)遞增的,當(dāng)SKIPIF1<0且SKIPIF1<0時(shí),SKIPIF1<0是單調(diào)遞減的;又SKIPIF1<0和SKIPIF1<0關(guān)于對稱軸對稱,所以可得SKIPIF1<0,且為SKIPIF1<0的最大值,即C正確;根據(jù)二次函數(shù)性質(zhì)可知,距離對稱軸越近SKIPIF1<0的值越大,易知SKIPIF1<0,即SKIPIF1<0距離對稱軸比SKIPIF1<0距離對稱軸遠(yuǎn),所以可得SKIPIF1<0,即D正確.【變式2】(2023·全國·高三專題練習(xí))設(shè)等差數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0.若SKIPIF1<0,則SKIPIF1<0的最大值為.【答案】SKIPIF1<0【詳解】設(shè)等差數(shù)列SKIPIF1<0的公差為SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,對稱軸為SKIPIF1<0,開口向下,所以當(dāng)SKIPIF1<0或SKIPIF1<0時(shí),SKIPIF1<0最大,最大值為SKIPIF1<0.故答案為:SKIPIF1<0【變式3】(2023秋·山西大同·高三大同市第二中學(xué)校??茧A段練習(xí))已知等差數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的通項(xiàng)公式SKIPIF1<0;(2)求SKIPIF1<0的最大值.【答案】(1)SKIPIF1<0(2)78【詳解】(1)設(shè)等差數(shù)列SKIPIF1<0的公差為SKIPIF1<0,∴SKIPIF1<0,解得SKIPIF1<0,∴數(shù)列SKIPIF1<0的通項(xiàng)公式為SKIPIF1<0.(2)由(1)知,SKIPIF1<0.所以SKIPIF1<0.由二次函數(shù)的性質(zhì)知,對稱軸方程為SKIPIF1<0,開口向下,所以,當(dāng)SKIPIF1<0取與SKIPIF1<0最近的整數(shù)即SKIPIF1<0時(shí),SKIPIF1<0最大值,最大值為SKIPIF1<0.題型06符合條件的最值問題【典例1】(2023秋·湖南邵陽·高三湖南省邵東市第一中學(xué)??茧A段練習(xí))已知等差數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,若SKIPIF1<0,則下列結(jié)論正確的是(

)A.?dāng)?shù)列SKIPIF1<0是遞增數(shù)列 B.SKIPIF1<0C.當(dāng)SKIPIF1<0取得最大值時(shí),SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】ABC選項(xiàng),SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,且SKIPIF1<0,B正確;∴公差SKIPIF1<0,等差數(shù)列SKIPIF1<0是遞減數(shù)列,A錯(cuò)誤;SKIPIF1<0時(shí),SKIPIF1<0取得最大值,C錯(cuò)誤;D選項(xiàng),SKIPIF1<0,D錯(cuò)誤.故選:B.【典例2】(2023秋·黑龍江哈爾濱·高三哈爾濱工業(yè)大學(xué)附屬中學(xué)校??茧A段練習(xí))已知等差數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0有最小值,且SKIPIF1<0,則使SKIPIF1<0成立的正整數(shù)n的最小值為(

)A.9 B.10 C.17 D.18【答案】D【詳解】由題意可知:等差數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0有最小值,則SKIPIF1<0且SKIPIF1<0,所以數(shù)列SKIPIF1<0是遞增數(shù)列,可得SKIPIF1<0是過原點(diǎn)的二次函數(shù)式,且開口向上,因?yàn)镾KIPIF1<0,可得SKIPIF1<0,則SKIPIF1<0又因?yàn)镾KIPIF1<0,可得SKIPIF1<0,則SKIPIF1<0,所以使SKIPIF1<0成立的正整數(shù)n的最小值為18.故選:D.【典例3】(多選)(2023秋·湖南株洲·高二株洲二中??茧A段練習(xí))設(shè)等差數(shù)列SKIPIF1<0的公差為d,前SKIPIF1<0項(xiàng)和為SKIPIF1<0,若SKIPIF1<0,則下列結(jié)論正確的是(

)A.?dāng)?shù)列SKIPIF1<0是遞增數(shù)列 B.SKIPIF1<0C.SKIPIF1<0 D.?dāng)?shù)列SKIPIF1<0中最大項(xiàng)為第6項(xiàng)【答案】BCD【詳解】對于選項(xiàng)A、C:因?yàn)镾KIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,又因?yàn)镾KIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0所以等差數(shù)列SKIPIF1<0是遞減數(shù)列,故A錯(cuò)誤,C正確;對于選項(xiàng)B:因?yàn)镾KIPIF1<0,所以SKIPIF1<0,故B正確;對于選項(xiàng)D:因?yàn)榈炔顢?shù)列SKIPIF1<0是遞減數(shù)列,且SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,所以數(shù)列SKIPIF1<0中最大項(xiàng)為第6項(xiàng),故D正確;故選:BCD.【變式1】(2023春·甘肅白銀·高二統(tǒng)考開學(xué)考試)設(shè)等差數(shù)列{SKIPIF1<0}的前n項(xiàng)和為SKIPIF1<0,若SKIPIF1<0,則當(dāng)SKIPIF1<0取得最大值時(shí),SKIPIF1<0=(

)A.8 B.9 C.10 D.11【答案】C【詳解】在等差數(shù)列{SKIPIF1<0}中,由SKIPIF1<0,得SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,則當(dāng)SKIPIF1<0取得最大值時(shí),SKIPIF1<0.故選:C【變式2】(多選)(2023秋·河北保定·高三河北省唐縣第一中學(xué)??茧A段練習(xí))設(shè)SKIPIF1<0是公差為d的等差數(shù)列,SKIPIF1<0是其前n項(xiàng)的和,且SKIPIF1<0,SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】AC【詳解】SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0,則SKIPIF1<0,故A正確;SKIPIF1<0,故B錯(cuò)誤;SKIPIF1<0,故C正確;SKIPIF1<0,SKIPIF1<0是遞增數(shù)列,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0中,只有SKIPIF1<0最小,故D錯(cuò)誤.故選:AC.【變式3】(多選)(2023秋·高二課時(shí)練習(xí))設(shè)SKIPIF1<0是等差數(shù)列,SKIPIF1<0是其前n項(xiàng)和,且SKIPIF1<0,SKIPIF1<0,則下列結(jié)論正確的是(

).A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0與SKIPIF1<0均為SKIPIF1<0的最大值【答案】BD【詳解】因?yàn)镾KIPIF1<0,SKIPIF1<0,則SKIPIF1<0,故B正確;設(shè)等差數(shù)列SKIPIF1<0的公差為SKIPIF1<0,則SKIPIF1<0,故A錯(cuò)誤;可知數(shù)列SKIPIF1<0為遞減數(shù)列,可得SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0,故C錯(cuò)誤;因?yàn)镾KIPIF1<0為最后一項(xiàng)正數(shù),根據(jù)加法的性質(zhì)可知:SKIPIF1<0為SKIPIF1<0的最大值,又因?yàn)镾KIPIF1<0,所以SKIPIF1<0與SKIPIF1<0均為SKIPIF1<0的最大值,故D正確;故選:BD.題型07求數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和問題【典例1】(2023秋·江蘇蘇州·高二吳江中學(xué)校考階段練習(xí))若等差數(shù)列SKIPIF1<0的首項(xiàng)SKIPIF1<0,SKIPIF1<0,記SKIPIF1<0,則SKIPIF1<0.【答案】SKIPIF1<0【詳解】因?yàn)镾KIPIF1<0,SKIPIF1<0,則SKIPIF1<0,可得等差數(shù)列SKIPIF1<0的前n項(xiàng)和SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,且SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),則SKIPIF1<0SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0SKIPIF1<0SKIPIF1<0;綜上所述:SKIPIF1<0.故答案為:SKIPIF1<0.【典例2】(2023秋·云南·高三校聯(lián)考階段練習(xí))已知數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,且SKIPIF1<0.(1)求SKIPIF1<0的通項(xiàng)公式(2)若SKIPIF1<0,求SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【詳解】(1)由SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),可得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,適合上式,所以數(shù)列SKIPIF1<0的通項(xiàng)公式為SKIPIF1<0.(2)由SKIPIF1<0,可得SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,可得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),可得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),可得SKIPIF1<0SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.【典例3】(2023秋·河北保定·高三河北省唐縣第一中學(xué)??茧A段練習(xí))從①SKIPIF1<0,②SKIPIF1<0,③SKIPIF1<0這三個(gè)條件中任選一個(gè),補(bǔ)充在下面的問題中,并作答.問題:已知等差數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,SKIPIF1<0,且__________,求數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0.【答案】SKIPIF1<0【詳解】若選條件①,設(shè)等差數(shù)列SKIPIF1<0的公差為SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0;若選條件②,設(shè)等差數(shù)列SKIPIF1<0的公差為SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0可化為SKIPIF1<0,解得SKIPIF1<0,故SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0;若選條件③,設(shè)等差數(shù)列SKIPIF1<0的公差為SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0.【變式1】(2023秋·江蘇南京·高二南京市第九中學(xué)??茧A段練習(xí))在公差為SKIPIF1<0的等差數(shù)列SKIPIF1<0中,已知SKIPIF1<0,且SKIPIF1<0.(1)求SKIPIF1<0;(2)若SKIPIF1<0,求SKIPIF1<0.【答案】(1)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;(2)65【詳解】(1)由SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;(2)由SKIPIF1<0,SKIPIF1<0,所以數(shù)列前10項(xiàng)為正數(shù),第11項(xiàng)為0,從第12項(xiàng)起為負(fù)數(shù),所以SKIPIF1<0=SKIPIF1<0=SKIPIF1<0.【變式2】(2023秋·西藏林芝·高三??茧A段練習(xí))設(shè)等差數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)求SKIPIF1<0的通項(xiàng)公式;(2)若SKIPIF1<0,求數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【詳解】(1)設(shè)等差數(shù)列SKIPIF1<0的公差為SKIPIF1<0,則SKIPIF1<0,解得:SKIPIF1<0,SKIPIF1<0.(2)由(1)知:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;SKIPIF1<0.【變式3】(2023·全國·高三專題練習(xí))已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,求數(shù)列SKIPIF1<0的前n項(xiàng)和SKIPIF1<0.【答案】SKIPIF1<0【詳解】因?yàn)镾KIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0.綜上所述,SKIPIF1<0題型08等差數(shù)列奇數(shù)項(xiàng)偶數(shù)項(xiàng)和【典例1】(2023秋·甘肅·高二??茧A段練習(xí))一個(gè)等差數(shù)列共100項(xiàng),其和為80,奇數(shù)項(xiàng)和為30,則該數(shù)列的公差為(

)A.SKIPIF1<0 B.2 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】設(shè)等差數(shù)列的公差為SKIPIF1<0,則由條件可知:數(shù)列的奇數(shù)項(xiàng)之和為SKIPIF1<0,①偶數(shù)項(xiàng)之和為SKIPIF1<0,②由②-①,得SKIPIF1<0,所以SKIPIF1<0,即該數(shù)列的公差為SKIPIF1<0.故選:D.【典例2】(2023·全國·高二專題練習(xí))已知等差數(shù)列SKIPIF1<0共有SKIPIF1<0項(xiàng),若數(shù)列SKIPIF1<0中奇數(shù)項(xiàng)的和為SKIPIF1<0,偶數(shù)項(xiàng)的和為SKIPIF1<0,SKIPIF1<0,則公差SKIPIF1<0的值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】由題意SKIPIF1<0,SKIPIF1<0,所以,SKIPIF1<0,SKIPIF1<0,所以,SKIPIF1<0,SKIPIF1<0.故選:A.【典例3】(2023·全國·高二隨堂練習(xí))已知等差數(shù)列SKIPIF1<0中,前m(m為奇數(shù))項(xiàng)的和為77,其中偶數(shù)項(xiàng)之和為33,且SKIPIF1<0,求通項(xiàng)公式.【答案】SKIPIF1<0【詳解】∵等差數(shù)列SKIPIF1<0中,前m(m為奇數(shù))項(xiàng)的和為77,∴SKIPIF1<0,①∵其中偶數(shù)項(xiàng)之和為33,由題意可得偶數(shù)項(xiàng)共有SKIPIF1<0項(xiàng),公差等于SKIPIF1<0,SKIPIF1<0SKIPIF1<0+SKIPIF1<0×SKIPIF1<0=33,②∵SKIPIF1<0,∴SKIPIF1<0,③由①②③,解得SKIPIF1<0,故SKIPIF1<0.?dāng)?shù)列SKIPIF1<0的通項(xiàng)公式為SKIPIF1<0.【變式1】(2023春·陜西寶雞·高三??茧A段練習(xí))已知等差數(shù)列SKIPIF1<0的前30項(xiàng)中奇數(shù)項(xiàng)的和為SKIPIF1<0,偶數(shù)項(xiàng)的和為SKIPIF1<0,且

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論