![內(nèi)蒙古自治區(qū)2024屆高三第五次模擬考試數(shù)學(xué)試卷含解析_第1頁](http://file4.renrendoc.com/view12/M00/05/32/wKhkGWZMj3yACZ1TAAH2siSSjCU311.jpg)
![內(nèi)蒙古自治區(qū)2024屆高三第五次模擬考試數(shù)學(xué)試卷含解析_第2頁](http://file4.renrendoc.com/view12/M00/05/32/wKhkGWZMj3yACZ1TAAH2siSSjCU3112.jpg)
![內(nèi)蒙古自治區(qū)2024屆高三第五次模擬考試數(shù)學(xué)試卷含解析_第3頁](http://file4.renrendoc.com/view12/M00/05/32/wKhkGWZMj3yACZ1TAAH2siSSjCU3113.jpg)
![內(nèi)蒙古自治區(qū)2024屆高三第五次模擬考試數(shù)學(xué)試卷含解析_第4頁](http://file4.renrendoc.com/view12/M00/05/32/wKhkGWZMj3yACZ1TAAH2siSSjCU3114.jpg)
![內(nèi)蒙古自治區(qū)2024屆高三第五次模擬考試數(shù)學(xué)試卷含解析_第5頁](http://file4.renrendoc.com/view12/M00/05/32/wKhkGWZMj3yACZ1TAAH2siSSjCU3115.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
內(nèi)蒙古自治區(qū)2024屆高三第五次模擬考試數(shù)學(xué)試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.ΔABC中,如果lgcosA=lgsinA.等邊三角形 B.直角三角形 C.等腰三角形 D.等腰直角三角形2.設(shè)全集U=R,集合,則()A.{x|-1<x<4} B.{x|-4<x<1} C.{x|-1≤x≤4} D.{x|-4≤x≤1}3.若不相等的非零實(shí)數(shù),,成等差數(shù)列,且,,成等比數(shù)列,則()A. B. C.2 D.4.如圖,內(nèi)接于圓,是圓的直徑,,則三棱錐體積的最大值為()A. B. C. D.5.已知雙曲線的一個(gè)焦點(diǎn)為,且與雙曲線的漸近線相同,則雙曲線的標(biāo)準(zhǔn)方程為()A. B. C. D.6.下列函數(shù)中,值域?yàn)榈呐己瘮?shù)是()A. B. C. D.7.若,則實(shí)數(shù)的大小關(guān)系為()A. B. C. D.8.某校在高一年級(jí)進(jìn)行了數(shù)學(xué)競(jìng)賽(總分100分),下表為高一·一班40名同學(xué)的數(shù)學(xué)競(jìng)賽成績(jī):555759616864625980889895607388748677799497100999789818060796082959093908580779968如圖的算法框圖中輸入的為上表中的學(xué)生的數(shù)學(xué)競(jìng)賽成績(jī),運(yùn)行相應(yīng)的程序,輸出,的值,則()A.6 B.8 C.10 D.129.下列函數(shù)中,在區(qū)間上單調(diào)遞減的是()A. B. C. D.10.一個(gè)空間幾何體的正視圖是長為4,寬為的長方形,側(cè)視圖是邊長為2的等邊三角形,俯視圖如圖所示,則該幾何體的體積為()A. B. C. D.11.若復(fù)數(shù)滿足,則的虛部為()A.5 B. C. D.-512.已知復(fù)數(shù)滿足,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖是一個(gè)幾何體的三視圖,若它的體積是,則_________,該幾何體的表面積為_________.14.如圖,半球內(nèi)有一內(nèi)接正四棱錐,該四棱錐的體積為,則該半球的體積為__________.15.現(xiàn)有一塊邊長為a的正方形鐵片,鐵片的四角截去四個(gè)邊長均為x的小正方形,然后做成一個(gè)無蓋方盒,該方盒容積的最大值是________.16.的展開式中的常數(shù)項(xiàng)為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在三棱柱中,四邊形是菱形,,,,,點(diǎn)M、N分別是、的中點(diǎn),且.(1)求證:平面平面;(2)求四棱錐的體積.18.(12分)某市為了鼓勵(lì)市民節(jié)約用電,實(shí)行“階梯式”電價(jià),將該市每戶居民的月用電量劃分為三檔,月用電量不超過度的部分按元/度收費(fèi),超過度但不超過度的部分按元/度收費(fèi),超過度的部分按元/度收費(fèi).(I)求某戶居民用電費(fèi)用(單位:元)關(guān)于月用電量(單位:度)的函數(shù)解析式;(Ⅱ)為了了解居民的用電情況,通過抽樣,獲得了今年1月份戶居民每戶的用電量,統(tǒng)計(jì)分析后得到如圖所示的頻率分布直方圖,若這戶居民中,今年1月份用電費(fèi)用不超過元的占,求,的值;(Ⅲ)在滿足(Ⅱ)的條件下,若以這戶居民用電量的頻率代替該月全市居民用戶用電量的概率,且同組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)代替,記為該居民用戶1月份的用電費(fèi)用,求的分布列和數(shù)學(xué)期望.19.(12分)如圖所示的幾何體中,,四邊形為正方形,四邊形為梯形,,,,為中點(diǎn).(1)證明:;(2)求二面角的余弦值.20.(12分)設(shè)函數(shù)其中(Ⅰ)若曲線在點(diǎn)處切線的傾斜角為,求的值;(Ⅱ)已知導(dǎo)函數(shù)在區(qū)間上存在零點(diǎn),證明:當(dāng)時(shí),.21.(12分)中,內(nèi)角的對(duì)邊分別為,.(1)求的大??;(2)若,且為的重心,且,求的面積.22.(10分)如圖,四棱錐中,底面為直角梯形,∥,為等邊三角形,平面底面,為的中點(diǎn).(1)求證:平面平面;(2)點(diǎn)在線段上,且,求平面與平面所成的銳二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
化簡(jiǎn)得lgcosA=lgsinCsinB=﹣lg2,即cosA=sinCsinB=12,結(jié)合0<A<π,可求A=π【詳解】由lgcosA=lgsinC-lgsinB=-lg2,可得lgcosA=∵0<A<π,∴A=π3,B+C=2π3,∴sinC=12sinB=12sin2π3-C=34cosC+故選:B【點(diǎn)睛】本題主要考查了對(duì)數(shù)的運(yùn)算性質(zhì)的應(yīng)用,兩角差的正弦公式的應(yīng)用,解題的關(guān)鍵是靈活利用基本公式,屬于基礎(chǔ)題.2、C【解析】
解一元二次不等式求得集合,由此求得【詳解】由,解得或.因?yàn)榛颍?故選:C【點(diǎn)睛】本小題主要考查一元二次不等式的解法,考查集合補(bǔ)集的概念和運(yùn)算,屬于基礎(chǔ)題.3、A【解析】
由題意,可得,,消去得,可得,繼而得到,代入即得解【詳解】由,,成等差數(shù)列,所以,又,,成等比數(shù)列,所以,消去得,所以,解得或,因?yàn)?,,是不相等的非零?shí)數(shù),所以,此時(shí),所以.故選:A【點(diǎn)睛】本題考查了等差等比數(shù)列的綜合應(yīng)用,考查了學(xué)生概念理解,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.4、B【解析】
根據(jù)已知證明平面,只要設(shè),則,從而可得體積,利用基本不等式可得最大值.【詳解】因?yàn)?,所以四邊形為平行四邊?又因?yàn)槠矫妫矫?,所以平面,所以平?在直角三角形中,,設(shè),則,所以,所以.又因?yàn)?,?dāng)且僅當(dāng),即時(shí)等號(hào)成立,所以.故選:B.【點(diǎn)睛】本題考查求棱錐體積的最大值.解題方法是:首先證明線面垂直同,得棱錐的高,然后設(shè)出底面三角形一邊長為,用建立體積與邊長的函數(shù)關(guān)系,由基本不等式得最值,或由函數(shù)的性質(zhì)得最值.5、B【解析】
根據(jù)焦點(diǎn)所在坐標(biāo)軸和漸近線方程設(shè)出雙曲線的標(biāo)準(zhǔn)方程,結(jié)合焦點(diǎn)坐標(biāo)求解.【詳解】∵雙曲線與的漸近線相同,且焦點(diǎn)在軸上,∴可設(shè)雙曲線的方程為,一個(gè)焦點(diǎn)為,∴,∴,故的標(biāo)準(zhǔn)方程為.故選:B【點(diǎn)睛】此題考查根據(jù)雙曲線的漸近線和焦點(diǎn)求解雙曲線的標(biāo)準(zhǔn)方程,易錯(cuò)點(diǎn)在于漏掉考慮焦點(diǎn)所在坐標(biāo)軸導(dǎo)致方程形式出錯(cuò).6、C【解析】試題分析:A中,函數(shù)為偶函數(shù),但,不滿足條件;B中,函數(shù)為奇函數(shù),不滿足條件;C中,函數(shù)為偶函數(shù)且,滿足條件;D中,函數(shù)為偶函數(shù),但,不滿足條件,故選C.考點(diǎn):1、函數(shù)的奇偶性;2、函數(shù)的值域.7、A【解析】
將化成以為底的對(duì)數(shù),即可判斷的大小關(guān)系;由對(duì)數(shù)函數(shù)、指數(shù)函數(shù)的性質(zhì),可判斷出與1的大小關(guān)系,從而可判斷三者的大小關(guān)系.【詳解】依題意,由對(duì)數(shù)函數(shù)的性質(zhì)可得.又因?yàn)?,?故選:A.【點(diǎn)睛】本題考查了指數(shù)函數(shù)的性質(zhì),考查了對(duì)數(shù)函數(shù)的性質(zhì),考查了對(duì)數(shù)的運(yùn)算性質(zhì).兩個(gè)對(duì)數(shù)型的數(shù)字比較大小時(shí),底數(shù)相同,則構(gòu)造對(duì)數(shù)函數(shù),結(jié)合對(duì)數(shù)的單調(diào)性可判斷大??;若真數(shù)相同,則結(jié)合對(duì)數(shù)函數(shù)的圖像或者換底公式可判斷大??;若真數(shù)和底數(shù)都不相同,則可與中間值如1,0比較大小.8、D【解析】
根據(jù)程序框圖判斷出的意義,由此求得的值,進(jìn)而求得的值.【詳解】由題意可得的取值為成績(jī)大于等于90的人數(shù),的取值為成績(jī)大于等于60且小于90的人數(shù),故,,所以.故選:D【點(diǎn)睛】本小題考查利用程序框圖計(jì)算統(tǒng)計(jì)量等基礎(chǔ)知識(shí);考查運(yùn)算求解能力,邏輯推理能力和數(shù)學(xué)應(yīng)用意識(shí).9、C【解析】
由每個(gè)函數(shù)的單調(diào)區(qū)間,即可得到本題答案.【詳解】因?yàn)楹瘮?shù)和在遞增,而在遞減.故選:C【點(diǎn)睛】本題主要考查常見簡(jiǎn)單函數(shù)的單調(diào)區(qū)間,屬基礎(chǔ)題.10、B【解析】
由三視圖確定原幾何體是正三棱柱,由此可求得體積.【詳解】由題意原幾何體是正三棱柱,.故選:B.【點(diǎn)睛】本題考查三視圖,考查棱柱的體積.解題關(guān)鍵是由三視圖不愿出原幾何體.11、C【解析】
把已知等式變形,再由復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn)得答案.【詳解】由(1+i)z=|3+4i|,得z,∴z的虛部為.故選C.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)的基本概念,是基礎(chǔ)題.12、A【解析】
根據(jù)復(fù)數(shù)的運(yùn)算法則,可得,然后利用復(fù)數(shù)模的概念,可得結(jié)果.【詳解】由題可知:由,所以所以故選:A【點(diǎn)睛】本題主要考查復(fù)數(shù)的運(yùn)算,考驗(yàn)計(jì)算,屬基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、;【解析】試題分析:如圖:此幾何體是四棱錐,底面是邊長為的正方形,平面平面,并且,,所以體積是,解得,四個(gè)側(cè)面都是直角三角形,所以計(jì)算出邊長,表面積是考點(diǎn):1.三視圖;2.幾何體的表面積.14、【解析】
由題意可知半球的半徑與正四棱錐的高相等,可得正四棱錐的棱與半徑的關(guān)系,進(jìn)而可寫出半球的半徑與四棱錐體積的關(guān)系,進(jìn)而求得結(jié)果.【詳解】設(shè)所給半球的半徑為,則四棱錐的高,則,由四棱錐的體積,半球的體積為:.【方法點(diǎn)睛】涉及球與棱柱、棱錐的切、接問題時(shí),一般過球心及多面體中的特殊點(diǎn)(一般為接、切點(diǎn))或線作截面,把空間問題轉(zhuǎn)化為平面問題,再利用平面幾何知識(shí)尋找?guī)缀误w中元素間的關(guān)系,或只畫內(nèi)切、外接的幾何體的直觀圖,確定球心的位置,弄清球的半徑(直徑)與該幾何體已知量的關(guān)系,列方程(組)求解.15、【解析】
由題意容積,求導(dǎo)研究單調(diào)性,分析即得解.【詳解】由題意:容積,,則,由得或(舍去),令則為V在定義域內(nèi)唯一的極大值點(diǎn)也是最大值點(diǎn),此時(shí).故答案為:【點(diǎn)睛】本題考查了導(dǎo)數(shù)在實(shí)際問題中的應(yīng)用,考查了學(xué)生數(shù)學(xué)建模,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.16、160【解析】
先求的展開式中通項(xiàng),令的指數(shù)為3即可求解結(jié)論.【詳解】解:因?yàn)榈恼归_式的通項(xiàng)公式為:;令,可得;的展開式中的常數(shù)項(xiàng)為:.故答案為:160.【點(diǎn)睛】本題考查二項(xiàng)式系數(shù)的性質(zhì),關(guān)鍵是熟記二項(xiàng)展開式的通項(xiàng),屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】
(1)要證面面垂直需要先證明線面垂直,即證明出平面即可;(2)求出點(diǎn)A到平面的距離,然后根據(jù)棱錐的體積公式即可求出四棱錐的體積.【詳解】(1)連接,由是平行四邊形及N是的中點(diǎn),得N也是的中點(diǎn),因?yàn)辄c(diǎn)M是的中點(diǎn),所以,因?yàn)?,所以,又,,所以平面,又平面,所以平面平面;?)過A作交于點(diǎn)O,因?yàn)槠矫嫫矫?,平面平面,所以平面,由是菱形及,得為三角形,則,由平面,得,從而側(cè)面為矩形,所以.【點(diǎn)睛】本題主要考查了面面垂直的證明,求四棱錐的體積,屬于一般題.18、(1);(2),;(3)見解析.【解析】試題分析:(1)根據(jù)題意分段表示出函數(shù)解析式;(2)將代入(1)中函數(shù)解析式可得,即,根據(jù)頻率分布直方圖可分別得到關(guān)于的方程,即可得;(3)取每段中點(diǎn)值作為代表的用電量,分別算出對(duì)應(yīng)的費(fèi)用值,對(duì)應(yīng)得出每組電費(fèi)的概率,即可得到的概率分布列,然后求出的期望.試題解析:(1)當(dāng)時(shí),;當(dāng)當(dāng)時(shí),;當(dāng)當(dāng)時(shí),,所以與之間的函數(shù)解析式為.(2)由(1)可知,當(dāng)時(shí),,則,結(jié)合頻率分布直方圖可知,∴,(3)由題意可知可取50,150,250,350,450,550,當(dāng)時(shí),,∴,當(dāng)時(shí),,∴,當(dāng)時(shí),,∴,當(dāng)時(shí),,∴,當(dāng)時(shí),,∴,當(dāng)時(shí),,∴,故的概率分布列為25751402203104100.10.20.30.20.150.05所以隨機(jī)變量的數(shù)學(xué)期望19、(1)見解析;(2)【解析】
(1)取的中點(diǎn),結(jié)合三角形中位線和長度關(guān)系,為平行四邊形,進(jìn)而得到,根據(jù)線面平行判定定理可證得結(jié)論;(2)以,,為,,軸建立空間直角坐標(biāo)系,分別求得兩面的法向量,求得法向量夾角的余弦值;根據(jù)二面角為銳角確定最終二面角的余弦值;【詳解】(1)取的中點(diǎn),連結(jié),因?yàn)闉橹悬c(diǎn),,,所以,,∴為平行四邊形,所以,又因?yàn)?,所以;?)由題及(1)易知,,兩兩垂直,所以以,,為,,軸建立空間直角坐標(biāo)系,則,,,,,,易知面的法向量為設(shè)面的法向量為則可得所以,如圖可知二面角為銳角,所以余弦值為【點(diǎn)睛】本題考查立體幾何中直線與平面平行關(guān)系的證明、空間向量法求解二面角,正確求解法向量是解題的關(guān)鍵,屬于中檔題.20、(Ⅰ);(Ⅱ)證明見解析【解析】
(Ⅰ)求導(dǎo)得到,,解得答案.(Ⅱ),故,在上單調(diào)遞減,在上單調(diào)遞增,,設(shè),證明函數(shù)單調(diào)遞減,故,得到證明.【詳解】(Ⅰ),故,,故.(Ⅱ),即,存在唯一零點(diǎn),設(shè)零點(diǎn)為,故,即,在上單調(diào)遞減,在上單調(diào)遞增,故,設(shè),則,設(shè),則,單調(diào)遞減,,故恒成立,故單調(diào)遞減.,故當(dāng)時(shí),.【點(diǎn)睛】本題考查了函數(shù)的切線問題,利用導(dǎo)數(shù)證明不等式,轉(zhuǎn)化為函數(shù)的最值是解題的關(guān)鍵.21、(1);(2)【解析】
(1)利用正弦定理,轉(zhuǎn)化為,分析運(yùn)算即得解;(2)由為的重心,得到,平方可得解c,由面積公式即得解.【詳解】(1)由,由正弦定理得C,即∴∵∴,又∵∴(2)由于為的重心故,∴解得或舍∴的面積為.【點(diǎn)睛】本題考查了正弦定理和余弦定理的綜合應(yīng)用,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.22、(1)見解析(2)【解析】
(1)根據(jù)等邊三角形
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 現(xiàn)代辦公室空間中的綠色植物應(yīng)用
- 現(xiàn)代制造園區(qū)的投資風(fēng)險(xiǎn)評(píng)估與管理
- 現(xiàn)代企業(yè)經(jīng)營中的稅務(wù)籌劃與風(fēng)險(xiǎn)管理
- 國慶節(jié)主題客堂活動(dòng)方案
- 2024年春九年級(jí)化學(xué)下冊(cè) 第10單元 酸和堿 實(shí)驗(yàn)活動(dòng)6 酸、堿的化學(xué)性質(zhì)說課稿 (新版)新人教版
- Unit7 第2課時(shí)(說課稿)Story time三年級(jí)英語上冊(cè)同步高效課堂系列(譯林版三起·2024秋)
- 2《紅燭》《致云雀》聯(lián)讀說課稿 2024-2025學(xué)年統(tǒng)編版高中語文必修上冊(cè)
- 《4 做陽光少年》(說課稿)-2023-2024學(xué)年五年級(jí)上冊(cè)綜合實(shí)踐活動(dòng)皖教版
- 2025水運(yùn)工程施工監(jiān)理合同(試行)
- 2025企業(yè)聘用臨時(shí)工合同
- 中國證監(jiān)會(huì)證券市場(chǎng)交易結(jié)算資金監(jiān)控系統(tǒng)證券公司接口規(guī)范
- 2025屆天津市部分學(xué)校高三年級(jí)八校聯(lián)考英語試題含解析
- 微項(xiàng)目 探討如何利用工業(yè)廢氣中的二氧化碳合成甲醇-2025年高考化學(xué)選擇性必修第一冊(cè)(魯科版)
- 廣東省廣州市黃埔區(qū)2024-2025學(xué)年八年級(jí)物理上學(xué)期教學(xué)質(zhì)量監(jiān)測(cè)試題
- 水產(chǎn)品冷凍加工原料處理與加工技術(shù)考核試卷
- 全新保密協(xié)議模板公安下載(2024版)
- 財(cái)務(wù)管理學(xué)(第10版)課件 第1章 總論
- GB/T 4008-2024錳硅合金
- 《鼻咽癌的診治》課件
- 2024年天津市中考英語試題卷(含答案)
- 2024年個(gè)人信用報(bào)告(個(gè)人簡(jiǎn)版)樣本(帶水印-可編輯)
評(píng)論
0/150
提交評(píng)論