基于YOLOv3的改進(jìn)儀表檢測算法_第1頁
基于YOLOv3的改進(jìn)儀表檢測算法_第2頁
基于YOLOv3的改進(jìn)儀表檢測算法_第3頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

基于YOLOv3的改進(jìn)儀表檢測算法Title:AModifiedYOLOv3-basedAlgorithmforInstrumentDetectionAbstract:Inrecentyears,objectdetectionhaswitnessedsubstantialprogressduetotheemergenceofdeeplearningtechniques.OneprominentobjectdetectionalgorithmisYouOnlyLookOnce(YOLO),whichhasgainedpopularityforitsreal-timeperformance.However,traditionalYOLOv3oftenfailstoachievesatisfactoryperformanceindetectingsmallobjectssuchasinstrumentsinvariousscenarios.Inthispaper,weproposeamodifiedYOLOv3-basedalgorithmforinstrumentdetection.Theproposedalgorithmaimstoimprovethedetectionaccuracyandefficiencywhilemaintainingreal-timeperformance.1.Introduction1.1BackgroundInstrumentdetectionplaysacriticalroleinvariousapplications,includinghealthcare,manufacturing,andautomation.Inthesescenarios,accuratelyidentifyingandlocalizinginstrumentsarenecessaryfordownstreamtasks.Therefore,thereisagrowingdemandforefficientandreliableinstrumentdetectionalgorithms.1.2MotivationDespitethesuccessofYOLOv3inobjectdetection,itoftenstruggleswiththedetectionofsmallobjects,suchasinstruments.Theseobjectstendtohavelowcontrast,intricateshapes,andsmallsizes,whichmakethemchallengingtodetectaccurately.Moreover,thereal-timeperformanceofYOLOv3canbecompromisedundersuchcircumstances.Hence,amodifiedversionofYOLOv3specificallydesignedforinstrumentdetectionisrequired.2.Methodology2.1YOLOv3OverviewAbriefexplanationoftheoriginalYOLOv3algorithm,includingitsarchitectureandkeycomponents,ispresentedinthissection.Thisservesasthefoundationfortheproposedmodifications.2.2ProposedModificationsToenhancetheinstrumentdetectioncapabilityofYOLOv3,weproposethefollowingmodifications:-FeaturePyramidNetwork(FPN):WeintegratetheFPNintotheYOLOv3architecturetoimprovetheabilitytodetectobjectsatdifferentscales.ThisaddressesthecommonissueofsmallinstrumentdetectioninYOLOv3.-AnchorOptimization:Weproposeanovelanchoroptimizationmethodtoadjusttheanchorscalesandaspectratiostobetteralignwiththecharacteristicsofinstrumentobjects.Thishelpscaptureinstrumentobjectswithgreateraccuracy.-DataAugmentation:Weintroducevariousdataaugmentationtechniques,suchasrotation,translation,andscalechanges,toincreasethediversityoftrainingdata.Thisfurtherimprovesthemodel'sgeneralizationabilityandrobustnesstodifferentinstrumenttypesandorientations.3.ExperimentalEvaluation3.1DatasetPreparationWecollectandannotateadatasetspecificallydesignedforinstrumentdetection.Thedatasetincludesvarioustypesofinstrumentswitharangeofsizes,orientations,andlightingconditions.Additionally,wesplitthedatasetintotraining,validation,andtestingsubsets.3.2ExperimentalSetupWeconductexperimentsonahigh-performancecomputingplatformequippedwithaGPUtoevaluatetheproposedalgorithm'sperformance.WecompareitwithboththeoriginalYOLOv3andotherstate-of-the-artinstrumentdetectionalgorithmstodemonstratetheeffectivenessofourmodifications.3.3PerformanceEvaluationWeusevariousevaluationmetricssuchasprecision,recall,andmeanAveragePrecision(mAP)toassesstheproposedalgorithm'sperformance.Theevaluationisperformedonthetestingsubsetofthedataset.4.ResultsandDiscussionWepresentanddiscusstheexperimentalresultsinthissection.Theperformancecomparisonbetweentheproposedalgorithmandexistingtechniquesunderscoresitssuperiorityininstrumentdetection,particularlyindetectingsmallandintricateinstrumentobjects.5.ConclusionsInthispaper,weproposedamodifiedYOLOv3-basedalgorithmforinstrumentdetection.Theproposedmodificationsaimedtoenhancethedetectionaccuracyandefficiencywhilemaintainingreal-timeperformance.ExperimentalresultsdemonstratedthatouralgorithmoutperformstheoriginalYOLOv3andotherstate-of-the-artalgorithmsininstrumentdetection,especiallyforsmallandintricateinstruments.ThemodifiedYOLOv3algorithmshowspromiseforpracticalapplicationsinhealthcare,manufacturing,andautomation.References:[List

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論