四川省樂山市市中學(xué)區(qū)重點(diǎn)名校2024屆中考數(shù)學(xué)考試模擬沖刺卷含解析_第1頁
四川省樂山市市中學(xué)區(qū)重點(diǎn)名校2024屆中考數(shù)學(xué)考試模擬沖刺卷含解析_第2頁
四川省樂山市市中學(xué)區(qū)重點(diǎn)名校2024屆中考數(shù)學(xué)考試模擬沖刺卷含解析_第3頁
四川省樂山市市中學(xué)區(qū)重點(diǎn)名校2024屆中考數(shù)學(xué)考試模擬沖刺卷含解析_第4頁
四川省樂山市市中學(xué)區(qū)重點(diǎn)名校2024屆中考數(shù)學(xué)考試模擬沖刺卷含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

四川省樂山市市中學(xué)區(qū)重點(diǎn)名校2024屆中考數(shù)學(xué)考試模擬沖刺卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.如圖,已知⊙O的半徑為5,AB是⊙O的弦,AB=8,Q為AB中點(diǎn),P是圓上的一點(diǎn)(不與A、B重合),連接PQ,則PQ的最小值為()A.1 B.2 C.3 D.82.甲、乙兩船從相距300km的A、B兩地同時(shí)出發(fā)相向而行,甲船從A地順流航行180km時(shí)與從B地逆流航行的乙船相遇,水流的速度為6km/h,若甲、乙兩船在靜水中的速度均為xkm/h,則求兩船在靜水中的速度可列方程為()A.= B.=C.= D.=3.某籃球運(yùn)動(dòng)員在連續(xù)7場比賽中的得分(單位:分)依次為20,18,23,17,20,20,18,則這組數(shù)據(jù)的眾數(shù)與中位數(shù)分別是()A.18分,17分B.20分,17分C.20分,19分D.20分,20分4.不等式﹣x+1>3的解集是()A.x<﹣4 B.x>﹣4 C.x>4 D.x<45.圖(1)是一個(gè)長為2m,寬為2n(m>n)的長方形,用剪刀沿圖中虛線(對稱軸)剪開,把它分成四塊形狀和大小都一樣的小長方形,然后按圖(2)那樣拼成一個(gè)正方形,則中間空的部分的面積是()A.2mn B.(m+n)2 C.(m-n)2 D.m2-n26.已知a,b,c在數(shù)軸上的位置如圖所示,化簡|a+c|-|a-2b|-|c+2b|的結(jié)果是()A.4b+2c B.0 C.2c D.2a+2c7.如圖,⊙O與直線l1相離,圓心O到直線l1的距離OB=2,OA=4,將直線l1繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°后得到的直線l2剛好與⊙O相切于點(diǎn)C,則OC=()A.1 B.2 C.3 D.48.二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖,圖象過點(diǎn)(-1,0),對稱軸為直線x=2,下列結(jié)論:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④當(dāng)x>-1時(shí),y的值隨x值的增大而增大.其中正確的結(jié)論有()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)9.如圖,CD是⊙O的弦,O是圓心,把⊙O的劣弧沿著CD對折,A是對折后劣弧上的一點(diǎn),∠CAD=100°,則∠B的度數(shù)是()A.100° B.80° C.60° D.50°10.下列計(jì)算正確的是()A.2x2-3x2=x2 B.x+x=x2 C.-(x-1)=-x+1 D.3+x=3x11.下面四個(gè)幾何體中,左視圖是四邊形的幾何體共有()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)12.如圖,在Rt△ABC中,∠ACB=90°,AC=BC=1,將繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°后得到Rt△ADE,點(diǎn)B經(jīng)過的路徑為弧BD,則圖中陰影部分的面積是()A. B. C.- D.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.如圖,在邊長為1正方形ABCD中,點(diǎn)P是邊AD上的動(dòng)點(diǎn),將△PAB沿直線BP翻折,點(diǎn)A的對應(yīng)點(diǎn)為點(diǎn)Q,連接BQ、DQ.則當(dāng)BQ+DQ的值最小時(shí),tan∠ABP=_____.14.如圖,PA,PB是⊙O是切線,A,B為切點(diǎn),AC是⊙O的直徑,若∠P=46°,則∠BAC=▲度.15.如圖,正比例函數(shù)y=kx(k>0)與反比例函數(shù)y=6x16.如圖,點(diǎn)A,B,C在⊙O上,∠OBC=18°,則∠A=_______________________.17.如圖,五邊形是正五邊形,若,則__________.18.如圖,在每個(gè)小正方形的邊長為1的網(wǎng)格中,點(diǎn)A,B,C均在格點(diǎn)上.(Ⅰ)AC的長等于_____;(Ⅱ)在線段AC上有一點(diǎn)D,滿足AB2=AD?AC,請?jiān)谌鐖D所示的網(wǎng)格中,用無刻度的直尺,畫出點(diǎn)D,并簡要說明點(diǎn)D的位置是如何找到的(不要求證明)_____.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在△AOB中,∠ABO=90°,OB=1,AB=8,反比例函數(shù)y=在第一象限內(nèi)的圖象分別交OA,AB于點(diǎn)C和點(diǎn)D,且△BOD的面積S△BOD=1.求反比例函數(shù)解析式;求點(diǎn)C的坐標(biāo).20.(6分)如圖,在△ABC中,AB=AC,以AB為直徑作半圓⊙O,交BC于點(diǎn)D,連接AD.過點(diǎn)D作DE⊥AC,垂足為點(diǎn)E.求證:DE是⊙O的切線;當(dāng)⊙O半徑為3,CE=2時(shí),求BD長.21.(6分)已知:如圖,AB為⊙O的直徑,AB=AC,BC交⊙O于點(diǎn)D,DE⊥AC于E.(1)求證:DE為⊙O的切線;(2)G是ED上一點(diǎn),連接BE交圓于F,連接AF并延長交ED于G.若GE=2,AF=3,求EF的長.22.(8分)如圖,在△ABC中,AB=AC,點(diǎn),在邊上,.求證:.23.(8分)如圖,AB是⊙O的直徑,BC⊥AB,垂足為點(diǎn)B,連接CO并延長交⊙O于點(diǎn)D、E,連接AD并延長交BC于點(diǎn)F.(1)試判斷∠CBD與∠CEB是否相等,并證明你的結(jié)論;(2)求證:(3)若BC=AB,求tan∠CDF的值.24.(10分)如圖,在△ABC中,AB=AC,∠BAC=90°,M是BC的中點(diǎn),延長AM到點(diǎn)D,AE=AD,∠EAD=90°,CE交AB于點(diǎn)F,CD=DF.(1)∠CAD=______度;(2)求∠CDF的度數(shù);(3)用等式表示線段CD和CE之間的數(shù)量關(guān)系,并證明.25.(10分)某新建小區(qū)要修一條1050米長的路,甲、乙兩個(gè)工程隊(duì)想承建這項(xiàng)工程.經(jīng)了解得到以下信息(如表):工程隊(duì)每天修路的長度(米)單獨(dú)完成所需天數(shù)(天)每天所需費(fèi)用(元)甲隊(duì)30n600乙隊(duì)mn﹣141160(1)甲隊(duì)單獨(dú)完成這項(xiàng)工程所需天數(shù)n=,乙隊(duì)每天修路的長度m=(米);(2)甲隊(duì)先修了x米之后,甲、乙兩隊(duì)一起修路,又用了y天完成這項(xiàng)工程(其中x,y為正整數(shù)).①當(dāng)x=90時(shí),求出乙隊(duì)修路的天數(shù);②求y與x之間的函數(shù)關(guān)系式(不用寫出x的取值范圍);③若總費(fèi)用不超過22800元,求甲隊(duì)至少先修了多少米.26.(12分)解方程:(1)x2﹣7x﹣18=0(2)3x(x﹣1)=2﹣2x27.(12分)一名在校大學(xué)生利用“互聯(lián)網(wǎng)+”自主創(chuàng)業(yè),銷售一種產(chǎn)品,這種產(chǎn)品成本價(jià)10元/件,已知銷售價(jià)不低于成本價(jià),且物價(jià)部門規(guī)定這種產(chǎn)品的銷售價(jià)不高于16元/件,市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(件)與銷售價(jià)x(元/件)之間的函數(shù)關(guān)系如圖所示.(1)求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;(2)求每天的銷售利潤W(元)與銷售價(jià)x(元/件)之間的函數(shù)關(guān)系式,并求出每件銷售價(jià)為多少元時(shí),每天的銷售利潤最大?最大利潤是多少?

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、B【解析】

連接OP、OA,根據(jù)垂徑定理求出AQ,根據(jù)勾股定理求出OQ,計(jì)算即可.【詳解】解:由題意得,當(dāng)點(diǎn)P為劣弧AB的中點(diǎn)時(shí),PQ最小,

連接OP、OA,由垂徑定理得,點(diǎn)Q在OP上,AQ=AB=4,在Rt△AOB中,OQ==3,∴PQ=OP-OQ=2,故選:B.【點(diǎn)睛】本題考查的是垂徑定理、勾股定理,掌握垂徑定理的推論是解題的關(guān)鍵.2、A【解析】分析:直接利用兩船的行駛距離除以速度=時(shí)間,得出等式求出答案.詳解:設(shè)甲、乙兩船在靜水中的速度均為xkm/h,則求兩船在靜水中的速度可列方程為:=.故選A.點(diǎn)睛:此題主要考查了由實(shí)際問題抽象出分式方程,正確表示出行駛的時(shí)間和速度是解題關(guān)鍵.3、D【解析】分析:根據(jù)中位數(shù)和眾數(shù)的定義求解:眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不止一個(gè);找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個(gè)數(shù)(或兩個(gè)數(shù)的平均數(shù))為中位數(shù).詳解:將數(shù)據(jù)重新排列為17、18、18、20、20、20、23,所以這組數(shù)據(jù)的眾數(shù)為20分、中位數(shù)為20分,故選:D.點(diǎn)睛:本題考查了確定一組數(shù)據(jù)的中位數(shù)和眾數(shù)的能力.一些學(xué)生往往對這個(gè)概念掌握不清楚,計(jì)算方法不明確而誤選其它選項(xiàng),注意找中位數(shù)的時(shí)候一定要先排好順序,然后再根據(jù)奇數(shù)和偶數(shù)個(gè)來確定中位數(shù),如果數(shù)據(jù)有奇數(shù)個(gè),則正中間的數(shù)字即為所求,如果是偶數(shù)個(gè)則找中間兩位數(shù)的平均數(shù).4、A【解析】

根據(jù)一元一次不等式的解法,移項(xiàng),合并同類項(xiàng),系數(shù)化為1即可得解.【詳解】移項(xiàng)得:?x>3?1,合并同類項(xiàng)得:?x>2,系數(shù)化為1得:x<-4.故選A.【點(diǎn)睛】本題考查了解一元一次不等式,解題的關(guān)鍵是熟練的掌握一元一次不等式的解法.5、C【解析】

解:由題意可得,正方形的邊長為(m+n),故正方形的面積為(m+n)1.又∵原矩形的面積為4mn,∴中間空的部分的面積=(m+n)1-4mn=(m-n)1.故選C.6、A【解析】由數(shù)軸上點(diǎn)的位置得:b<a<0<c,且|b|>|c|>|a|,∴a+c>0,a?2b>0,c+2b<0,則原式=a+c?a+2b+c+2b=4b+2c.故選:B.點(diǎn)睛:本題考查了整式的加減以及數(shù)軸,涉及的知識有:去括號法則以及合并同類項(xiàng)法則,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.7、B【解析】

先利用三角函數(shù)計(jì)算出∠OAB=60°,再根據(jù)旋轉(zhuǎn)的性質(zhì)得∠CAB=30°,根據(jù)切線的性質(zhì)得OC⊥AC,從而得到∠OAC=30°,然后根據(jù)含30度的直角三角形三邊的關(guān)系可得到OC的長.【詳解】解:在Rt△ABO中,sin∠OAB===,∴∠OAB=60°,∵直線l1繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°后得到的直線l1剛好與⊙O相切于點(diǎn)C,∴∠CAB=30°,OC⊥AC,∴∠OAC=60°﹣30°=30°,在Rt△OAC中,OC=OA=1.故選B.【點(diǎn)睛】本題考查了直線與圓的位置關(guān)系:設(shè)⊙O的半徑為r,圓心O到直線l的距離為d,則直線l和⊙O相交?d<r;直線l和⊙O相切?d=r;直線l和⊙O相離?d>r.也考查了旋轉(zhuǎn)的性質(zhì).8、B【解析】

根據(jù)拋物線的對稱軸即可判定①;觀察圖象可得,當(dāng)x=-3時(shí),y<0,由此即可判定②;觀察圖象可得,當(dāng)x=1時(shí),y>0,由此即可判定③;觀察圖象可得,當(dāng)x>2時(shí),y的值隨x值的增大而增大,即可判定④.【詳解】由拋物線的對稱軸為x=2可得-b觀察圖象可得,當(dāng)x=-3時(shí),y<0,即9a-3b+c<0,所以a+c<觀察圖象可得,當(dāng)x=1時(shí),y>0,即a+b+c>0,③正確;觀察圖象可得,當(dāng)x>2時(shí),y的值隨x值的增大而增大,④錯(cuò)誤.綜上,正確的結(jié)論有2個(gè).故選B.【點(diǎn)睛】本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系:二次函數(shù)y=ax2+bx+c(a≠0),二次項(xiàng)系數(shù)a決定拋物線的開口方向和大小,當(dāng)a>0時(shí),拋物線向上開口;當(dāng)a<0時(shí),拋物線向下開口;一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對稱軸的位置,當(dāng)a與b同號時(shí)(即ab>0),對稱軸在y軸左;當(dāng)a與b異號時(shí)(即ab<0),對稱軸在y軸右;常數(shù)項(xiàng)c決定拋物線與y軸交點(diǎn).拋物線與y軸交于(0,c);拋物線與x軸交點(diǎn)個(gè)數(shù)由△決定,△=b2-4ac>0時(shí),拋物線與x軸有2個(gè)交點(diǎn);△=b2-4ac=0時(shí),拋物線與x軸有1個(gè)交點(diǎn);△=b2-4ac<0時(shí),拋物線與x軸沒有交點(diǎn).9、B【解析】試題分析:如圖,翻折△ACD,點(diǎn)A落在A′處,可知∠A=∠A′=100°,然后由圓內(nèi)接四邊形可知∠A′+∠B=180°,解得∠B=80°.故選:B10、C【解析】

根據(jù)合并同類項(xiàng)法則和去括號法則逐一判斷即可得.【詳解】解:A.2x2-3x2=-x2,故此選項(xiàng)錯(cuò)誤;

B.x+x=2x,故此選項(xiàng)錯(cuò)誤;

C.-(x-1)=-x+1,故此選項(xiàng)正確;

D.3與x不能合并,此選項(xiàng)錯(cuò)誤;

故選C.【點(diǎn)睛】本題考查了整式的加減,熟練掌握運(yùn)算法則是解題的關(guān)鍵.11、B【解析】簡單幾何體的三視圖.【分析】左視圖是從左邊看到的圖形,因?yàn)閳A柱的左視圖是矩形,圓錐的左視圖是等腰三角形,球的左視圖是圓,正方體的左視圖是正方形,所以,左視圖是四邊形的幾何體是圓柱和正方體2個(gè).故選B.12、A【解析】

先根據(jù)勾股定理得到AB=,再根據(jù)扇形的面積公式計(jì)算出S扇形ABD,由旋轉(zhuǎn)的性質(zhì)得到Rt△ADE≌Rt△ACB,于是S陰影部分=S△ADE+S扇形ABD-S△ABC=S扇形ABD.【詳解】∵∠ACB=90°,AC=BC=1,∴AB=,∴S扇形ABD=,又∵Rt△ABC繞A點(diǎn)逆時(shí)針旋轉(zhuǎn)30°后得到Rt△ADE,∴Rt△ADE≌Rt△ACB,∴S陰影部分=S△ADE+S扇形ABD?S△ABC=S扇形ABD=,故選A.【點(diǎn)睛】本題考查扇形面積計(jì)算,熟記扇形面積公式,采用作差法計(jì)算面積是解題的關(guān)鍵.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、﹣1【解析】

連接DB,若Q點(diǎn)落在BD上,此時(shí)和最短,且為,設(shè)AP=x,則PD=1﹣x,PQ=x.解直角三角形得到AP=﹣1,根據(jù)三角函數(shù)的定義即可得到結(jié)論.【詳解】如圖:連接DB,若Q點(diǎn)落在BD上,此時(shí)和最短,且為,設(shè)AP=x,則PD=1﹣x,PQ=x.∵∠PDQ=45°,∴PD=PQ,即1﹣x=,∴x=﹣1,∴AP=﹣1,∴tan∠ABP==﹣1,故答案為:﹣1.【點(diǎn)睛】本題考查了翻折變換(折疊問題),正方形的性質(zhì),軸對稱﹣?zhàn)疃搪肪€問題,正確的理解題意是解題的關(guān)鍵.14、1.【解析】

由PA、PB是圓O的切線,根據(jù)切線長定理得到PA=PB,即三角形APB為等腰三角形,由頂角的度數(shù),利用三角形的內(nèi)角和定理求出底角的度數(shù),再由AP為圓O的切線,得到OA與AP垂直,根據(jù)垂直的定義得到∠OAP為直角,再由∠OAP-∠PAB即可求出∠BAC的度數(shù)【詳解】∵PA,PB是⊙O是切線,∴PA=PB.又∵∠P=46°,∴∠PAB=∠PBA=.又∵PA是⊙O是切線,AO為半徑,∴OA⊥AP.∴∠OAP=90°.∴∠BAC=∠OAP﹣∠PAB=90°﹣67°=1°.故答案為:1【點(diǎn)睛】此題考查了切線的性質(zhì),切線長定理,等腰三角形的性質(zhì),以及三角形的內(nèi)角和定理,熟練掌握定理及性質(zhì)是解本題的關(guān)鍵.15、1.【解析】

根據(jù)反比例函數(shù)的性質(zhì)可判斷點(diǎn)A與點(diǎn)B關(guān)于原點(diǎn)對稱,則S△BOC=S△AOC,再利用反比例函數(shù)k的幾何意義得到S△AOC=3,則易得S△ABC=1.【詳解】∵雙曲線y=6x∴點(diǎn)A與點(diǎn)B關(guān)于原點(diǎn)對稱,∴S△BOC=S△AOC,∵S△AOC=12×1=3,∴S△ABC=2S△AOC故答案為1.16、72°.【解析】

解:∵OB=OC,∠OBC=18°,∴∠BCO=∠OBC=18°,∴∠BOC=180°﹣2∠OBC=180°﹣2×18°=144°,∴∠A=∠BOC=×144°=72°.故答案為72°.【點(diǎn)睛】本題考查圓周角定理,掌握同弧所對的圓周角是圓心角的一半是本題的解題關(guān)鍵.17、72【解析】分析:延長AB交于點(diǎn)F,根據(jù)得到∠2=∠3,根據(jù)五邊形是正五邊形得到∠FBC=72°,最后根據(jù)三角形的外角等于與它不相鄰的兩個(gè)內(nèi)角的和即可求出.詳解:延長AB交于點(diǎn)F,∵,∴∠2=∠3,∵五邊形是正五邊形,∴∠ABC=108°,∴∠FBC=72°,∠1-∠2=∠1-∠3=∠FBC=72°故答案為:72°.點(diǎn)睛:此題主要考查了平行線的性質(zhì)和正五邊形的性質(zhì),正確把握五邊形的性質(zhì)是解題關(guān)鍵.18、5見解析.【解析】

(1)由勾股定理即可求解;(2)尋找格點(diǎn)M和N,構(gòu)建與△ABC全等的△AMN,易證MN⊥AC,從而得到MN與AC的交點(diǎn)即為所求D點(diǎn).【詳解】(1)AC=;(2)如圖,連接格點(diǎn)M和N,由圖可知:AB=AM=4,BC=AN=,AC=MN=,∴△ABC≌△MAN,∴∠AMN=∠BAC,∴∠MAD+∠CAB=∠MAD+∠AMN=90°,∴MN⊥AC,易解得△MAN以MN為底時(shí)的高為,∵AB2=AD?AC,∴AD=AB2÷AC=,綜上可知,MN與AC的交點(diǎn)即為所求D點(diǎn).【點(diǎn)睛】本題考查了平面直角坐標(biāo)系中定點(diǎn)的問題,理解第2問中構(gòu)造全等三角形從而確定D點(diǎn)的思路.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)反比例函數(shù)解析式為y=;(2)C點(diǎn)坐標(biāo)為(2,1)【解析】

(1)由S△BOD=1可得BD的長,從而可得D的坐標(biāo),然后代入反比例函數(shù)解析式可求得k,從而得解析式為y=;(2)由已知可確定A點(diǎn)坐標(biāo),再由待定系數(shù)法求出直線AB的解析式為y=2x,然后解方程組即可得到C點(diǎn)坐標(biāo).【詳解】(1)∵∠ABO=90°,OB=1,S△BOD=1,∴OB×BD=1,解得BD=2,∴D(1,2)將D(1,2)代入y=,得2=,∴k=8,∴反比例函數(shù)解析式為y=;(2)∵∠ABO=90°,OB=1,AB=8,∴A點(diǎn)坐標(biāo)為(1,8),設(shè)直線OA的解析式為y=kx,把A(1,8)代入得1k=8,解得k=2,∴直線AB的解析式為y=2x,解方程組得或,∴C點(diǎn)坐標(biāo)為(2,1).20、(1)證明見解析;(2)BD=2.【解析】

(1)連接OD,AB為⊙0的直徑得∠ADB=90°,由AB=AC,根據(jù)等腰三角形性質(zhì)得AD平分BC,即DB=DC,則OD為△ABC的中位線,所以O(shè)D∥AC,而DE⊥AC,則OD⊥DE,然后根據(jù)切線的判定方法即可得到結(jié)論;

(2)由∠B=∠C,∠CED=∠BDA=90°,得出△DEC∽△ADB,得出,從而求得BD?CD=AB?CE,由BD=CD,即可求得BD2=AB?CE,然后代入數(shù)據(jù)即可得到結(jié)果.【詳解】(1)證明:連接OD,如圖,∵AB為⊙0的直徑,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴AD平分BC,即DB=DC,∵OA=OB,∴OD為△ABC的中位線,∴OD∥AC,∵DE⊥AC,∴OD⊥DE,∴DE是⊙0的切線;(2)∵∠B=∠C,∠CED=∠BDA=90°,∴△DEC∽△ADB,∴,∴BD?CD=AB?CE,∵BD=CD,∴BD2=AB?CE,∵⊙O半徑為3,CE=2,∴BD==2.【點(diǎn)睛】本題考查了切線的判定定理:過半徑的外端點(diǎn)且與半徑垂直的直線為圓的切線.也考查了等腰三角形的性質(zhì)、三角形相似的判定和性質(zhì).21、(1)見解析;(2)∠EAF的度數(shù)為30°【解析】

(1)連接OD,如圖,先證明OD∥AC,再利用DE⊥AC得到OD⊥DE,然后根據(jù)切線的判定定理得到結(jié)論;(2)利用圓周角定理得到∠AFB=90°,再證明Rt△GEF∽△Rt△GAE,利用相似比得到于是可求出GF=1,然后在Rt△AEG中利用正弦定義求出∠EAF的度數(shù)即可.【詳解】(1)證明:連接OD,如圖,∵OB=OD,∴∠OBD=∠ODB,∵AB=AC,∴∠ABC=∠C,∴∠ODB=∠C,∴OD∥AC,∵DE⊥AC,∴OD⊥DE,∴DE為⊙O的切線;(2)解:∵AB為直徑,∴∠AFB=90°,∵∠EGF=∠AGF,∴Rt△GEF∽△Rt△GAE,∴,即整理得GF2+3GF﹣4=0,解得GF=1或GF=﹣4(舍去),在Rt△AEG中,sin∠EAG∴∠EAG=30°,即∠EAF的度數(shù)為30°.【點(diǎn)睛】本題考查了切線的性質(zhì):經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的切線;圓的切線垂直于經(jīng)過切點(diǎn)的半徑.判定切線時(shí)“連圓心和直線與圓的公共點(diǎn)”或“過圓心作這條直線的垂線”;有切線時(shí),常?!坝龅角悬c(diǎn)連圓心得半徑”.也考查了圓周角定理.22、見解析【解析】試題分析:證明△ABE≌△ACD即可.試題解析:法1:∵AB=AC,∴∠B=∠C,∵AD=CE,∴∠ADE=∠AED,∴△ABE≌△ACD,∴BE=CD,∴BD=CE,法2:如圖,作AF⊥BC于F,∵AB=AC,∴BF=CF,∵AD=AE,∴DF=EF,∴BF-DF=CF-EF,即BD=CE.23、(1)∠CBD與∠CEB相等,證明見解析;(2)證明見解析;(3)tan∠CDF=.【解析】試題分析:(1)由AB是⊙O的直徑,BC切⊙O于點(diǎn)B,可得∠ADB=∠ABC=90°,由此可得∠A+∠ABD=∠ABD+∠CBD=90°,從而可得∠A=∠CBD,結(jié)合∠A=∠CEB即可得到∠CBD=∠CEB;(2)由∠C=∠C,∠CEB=∠CBD,可得∠EBC=∠BDC,從而可得△EBC∽△BDC,再由相似三角形的性質(zhì)即可得到結(jié)論;(3)設(shè)AB=2x,結(jié)合BC=AB,AB是直徑,可得BC=3x,OB=OD=x,再結(jié)合∠ABC=90°,可得OC=x,CD=(-1)x;由AO=DO,可得∠CDF=∠A=∠DBF,從而可得△DCF∽△BCD,由此可得:==,這樣即可得到tan∠CDF=tan∠DBF==.試題解析:(1)∠CBD與∠CEB相等,理由如下:∵BC切⊙O于點(diǎn)B,∴∠CBD=∠BAD,∵∠BAD=∠CEB,∴∠CEB=∠CBD,(2)∵∠C=∠C,∠CEB=∠CBD,∴∠EBC=∠BDC,∴△EBC∽△BDC,∴;(3)設(shè)AB=2x,∵BC=AB,AB是直徑,∴BC=3x,OB=OD=x,∵∠ABC=90°,∴OC=x,∴CD=(-1)x,∵AO=DO,∴∠CDF=∠A=∠DBF,∴△DCF∽△BCD,∴==,∵tan∠DBF==,∴tan∠CDF=.點(diǎn)睛:解答本題第3問的要點(diǎn)是:(1)通過證∠CDF=∠A=∠DBF,把求tan∠CDF轉(zhuǎn)化為求tan∠DBF=;(2)通過證△DCF∽△BCD,得到.24、(1)45;(2)90°;(3)見解析.【解析】

(1)根據(jù)等腰三角形三線合一可得結(jié)論;(2)連接DB,先證明△BAD≌△CAD,得BD=CD=DF,則∠DBA=∠DFB=∠DCA,根據(jù)四邊形內(nèi)角和與平角的定義可得∠BAC+∠CDF=180°,所以∠CDF=90°;(3)證明△EAF≌△DAF,得DF=EF,由②可知,可得結(jié)論.【詳解】(1)解:∵AB=AC,M是BC的中點(diǎn),∴AM⊥BC,∠BAD=∠CAD,∵∠BAC=90°,∴∠CAD=45°,故答案為:45(2)解:如圖,連接DB.∵AB=AC,∠BAC=90°,M是BC的中點(diǎn),∴∠BAD=∠CAD=45°.∴△BAD≌△CAD.∴∠DBA=∠DCA,BD=CD.∵CD=DF,∴BD=DF.∴∠DBA=∠DFB=∠DCA.∵∠DFB+∠DFA=180°,∴∠DCA+∠DFA=180°.∴∠BAC+∠CDF=180°.∴∠CDF=90°.(3).證明:∵∠EAD=90°,∴∠EAF=∠DAF=45°.∵AD=AE,∴△EAF≌△DAF.∴DF=EF.由②可知,.∴.【點(diǎn)睛】此題考查等腰三角形的性質(zhì),全等三角形的判定與性質(zhì),直角三角形的性質(zhì),解題關(guān)鍵在于掌握判定定理及性質(zhì).25、(1)35,50;(2)①12;②y=﹣x+;③15

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論