2024屆云南省大理州新世紀中學(xué)數(shù)學(xué)高一下期末統(tǒng)考試題含解析_第1頁
2024屆云南省大理州新世紀中學(xué)數(shù)學(xué)高一下期末統(tǒng)考試題含解析_第2頁
2024屆云南省大理州新世紀中學(xué)數(shù)學(xué)高一下期末統(tǒng)考試題含解析_第3頁
2024屆云南省大理州新世紀中學(xué)數(shù)學(xué)高一下期末統(tǒng)考試題含解析_第4頁
2024屆云南省大理州新世紀中學(xué)數(shù)學(xué)高一下期末統(tǒng)考試題含解析_第5頁
已閱讀5頁,還剩9頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆云南省大理州新世紀中學(xué)數(shù)學(xué)高一下期末統(tǒng)考試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知點A(1,0),B(0,1),C(–2,–3),則△ABC的面積為A.3 B.2 C.1 D.2.過點且與直線垂直的直線方程為()A. B.C. D.3.在中,,則是()A.等邊三角形 B.直角三角形C.等腰三角形 D.等腰直角三角形4.已知變量與正相關(guān),且由觀測數(shù)據(jù)算得樣本平均數(shù),,則由該觀測的數(shù)據(jù)算得的線性回歸方程可能是()A. B.C. D.5.在中,角的對邊分別為,若,則A.無解 B.有一解C.有兩解 D.解的個數(shù)無法確定6.給出函數(shù)為常數(shù),且,,無論a取何值,函數(shù)恒過定點P,則P的坐標是A. B. C. D.7.某小組有3名男生和2名女生,從中任選2名同學(xué)去參加演講比賽,事件“至少1名女生”與事件“全是男生”()A.是互斥事件,不是對立事件B.是對立事件,不是互斥事件C.既是互斥事件,也是對立事件D.既不是互斥事件也不是對立事件8.某同學(xué)用收集到的6組數(shù)據(jù)對(xi,yi)(i=1,2,3,4,5,6)制作成如圖所示的散點圖(點旁的數(shù)據(jù)為該點坐標),并由最小二乘法計算得到回歸直線l的方程:x,相關(guān)指數(shù)為r.現(xiàn)給出以下3個結(jié)論:①r>0;②直線l恰好過點D;③1;其中正確的結(jié)論是A.①② B.①③C.②③ D.①②③9.設(shè)的內(nèi)角,,所對的邊分別為,,,且,,面積的最大值為()A.6 B.8 C.7 D.910.已知向量,則與夾角的大小為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.某次體檢,6位同學(xué)的身高(單位:米)分別為1.72,1.78,1.75,1.80,1.69,1.77則這組數(shù)據(jù)的中位數(shù)是_________(米).12.若點,關(guān)于直線l對稱,那么直線l的方程為________.13.200名職工年齡分布如圖所示,從中隨機抽取40名職工作樣本,采用系統(tǒng)抽樣方法,按1~200編號,分為40組,分別為1~5,6~10,…,196~200,若第5組抽取號碼為22,則第8組抽取號碼為________.若采用分層抽樣,40歲以下年齡段應(yīng)抽取________人.14.長時間的低頭,對人的身體如頸椎、眼睛等會造成定的損害,為了了解某群體中“低頭族”的比例,現(xiàn)從該群體包含老、中、青三個年齡段的人中采用分層抽樣的方法抽取人進行調(diào)查,已知這人里老、中、青三個年齡段的分配比例如圖所示,則這個群體里青年人人數(shù)為_____15.甲、乙兩名新戰(zhàn)土組成戰(zhàn)術(shù)小組進行射擊訓(xùn)練,已知單發(fā)射擊時,甲戰(zhàn)士擊中靶心的概率為0.8,乙戰(zhàn)士擊中靶心的概率為0.5,兩人射擊的情況互不影響若兩人各單發(fā)射擊一次,則至少有一發(fā)擊中靶心的概率是______.16.已知向量,,若,則實數(shù)__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,正方體.(1)求證:平面;(2)求異面直線AC與所成角的大?。?8.下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量(噸)與相應(yīng)的生產(chǎn)能耗(噸)標準煤的幾組對照數(shù)據(jù).(1)請畫出上表數(shù)據(jù)的散點圖;(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出回歸方程;(3)已知該廠技改前噸甲產(chǎn)品的生產(chǎn)能耗為噸標準煤.試根據(jù)(2)求出的線性回歸方程,預(yù)測生產(chǎn)噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少噸標準煤?(注:,)19.已知數(shù)列的前項和,且滿足.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)求數(shù)列的前項和.20.已知函數(shù).(1)求的單調(diào)遞增區(qū)間;(2)求在區(qū)間上的最值.21.設(shè)為數(shù)列的前項和,.(1)求證:數(shù)列是等比數(shù)列;(2)求證:.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】

由兩點式求得直線的方程,利用點到直線距離公式求得三角形的高,由兩點間距離公式求得的長,從而根據(jù)三角形面積公式可得結(jié)果.【詳解】∵點A(1,0),B(0,1),∴直線AB的方程為x+y–1=0,,又∵點C(–2,–3)到直線AB的距離為,∴△ABC的面積為S=.故選A.【點睛】本題主要考查兩點間的距離公式,點到直線的距離公式、三角形面積公式以及直線方程的應(yīng)用,意在考查綜合運用所學(xué)知識解答問題的能力,屬于中檔題.2、A【解析】

先根據(jù)求出與之垂直直線的斜率,再利用點斜式求得直線方程?!驹斀狻坑煽傻弥本€斜率,根據(jù)兩直線垂直的關(guān)系,求得,再利用點斜式,可求得直線方程為,化簡得,選A【點睛】當直線斜率存在時,直線垂直的斜率關(guān)系為3、C【解析】

由二倍角公式可得,,再根據(jù)誘導(dǎo)公式可得,然后利用兩角和與差的余弦公式,即可將化簡成,所以,即可求得答案.【詳解】因為,,所以,,即,.故選:C.【點睛】本題主要考查利用二倍角公式,兩角和與差的余弦公式進行三角恒等變換,意在考查學(xué)生的數(shù)學(xué)運算能力,屬于基礎(chǔ)題.4、A【解析】試題分析:因為與正相關(guān),排除選項C、D,又因為線性回歸方程恒過樣本點的中心,故排除選項B;故選A.考點:線性回歸直線.5、C【解析】

求得,根據(jù),即可判定有兩解,得到答案.【詳解】由題意,因為,又由,且,所以有兩解.【點睛】本題主要考查了三角形解的個數(shù)的判定,以及正弦定理的應(yīng)用,著重考查了推理與運算能力,屬于基礎(chǔ)題.6、D【解析】試題分析:因為恒過定點,所以函數(shù)恒過定點.故選D.考點:指數(shù)函數(shù)的性質(zhì).7、C【解析】至少1名女生的對立事件就是全是男生.因此事件“至少1名女生”與事件“全是男生”既是互斥事件,也是對立事件8、A【解析】由圖可知這些點分布在一條斜率大于零的直線附近,所以為正相關(guān),即相關(guān)系數(shù)因為所以回歸直線的方程必過點,即直線恰好過點;因為直線斜率接近于AD斜率,而,所以③錯誤,綜上正確結(jié)論是①②,選A.9、D【解析】

由已知利用基本不等式求得的最大值,根據(jù)三角形的面積公式,即可求解,得到答案.【詳解】由題意,利用基本不等式可得,即,解得,當且僅當時等號成立,又因為,所以,當且僅當時等號成立,故三角形的面積的最大值為,故選D.【點睛】本題主要考查了基本不等式的應(yīng)用,以及三角形的面積公式的應(yīng)用,著重考查了轉(zhuǎn)化思想,以及推理與運算能力,屬于基礎(chǔ)題.10、D【解析】

。分別求出,,,利用即可得出答案.【詳解】設(shè)與的夾角為故選:D【點睛】本題主要考查了求向量的夾角,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、1.76【解析】

將這6位同學(xué)的身高按照從低到高排列為:1.69,1.72,1.75,1.77,1.78,1.80,這六個數(shù)的中位數(shù)是1.75與1.77的平均數(shù),顯然為1.76.【考點】中位數(shù)的概念【點睛】本題主要考查中位數(shù)的概念,是一道基礎(chǔ)題目.從歷年高考題目看,涉及統(tǒng)計的題目,往往不難,主要考查考生的視圖、用圖能力,以及應(yīng)用數(shù)學(xué)解決實際問題的能力.12、【解析】

利用直線垂直求出對稱軸斜率,利用中點坐標公式求出中點,再由點斜式可得結(jié)果.【詳解】求得,∵點,關(guān)于直線l對稱,∴直線l的斜率1,直線l過AB的中點,∴直線l的方程為,即.故答案為:.【點睛】本題主要考查直線垂直的性質(zhì),考查了直線點斜式方程的應(yīng)用,屬于基礎(chǔ)題.13、371【解析】

由系統(tǒng)抽樣,編號是等距出現(xiàn)的規(guī)律可得,分層抽樣是按比例抽取人數(shù).【詳解】第8組編號是22+5+5+5=37,分層抽樣,40歲以下抽取的人數(shù)為50%×40=1(人).故答案為:37;1.【點睛】本題考查系統(tǒng)抽樣和分層抽樣,屬于基礎(chǔ)題.14、【解析】

根據(jù)餅狀圖得到青年人的分配比例;利用總數(shù)乘以比例即可得到青年人的人數(shù).【詳解】由餅狀圖可知青年人的分配比例為:這個群體里青年人的人數(shù)為:人本題正確結(jié)果:【點睛】本題考查分層抽樣知識的應(yīng)用,屬于基礎(chǔ)題.15、【解析】

利用對立事件概率計算公式和相互獨立事件概率乘法公式能求出至少有一發(fā)擊中靶心的概率.【詳解】甲、乙兩名新戰(zhàn)土組成戰(zhàn)術(shù)小組進行射擊訓(xùn)練,單發(fā)射擊時,甲戰(zhàn)士擊中靶心的概率為0.8,乙戰(zhàn)士擊中靶心的概率為0.5,兩人射擊的情況互不影響若兩人各單發(fā)射擊一次,則至少有一發(fā)擊中靶心的概率是:.故答案為0.1.【點睛】本題考查概率的求法,考查對立事件概率計算公式和相互獨立事件概率乘法公式等基礎(chǔ)知識,考查運算求解能力,屬于基礎(chǔ)題.16、【解析】

根據(jù)平面向量時,列方程求出的值.【詳解】解:向量,,若,則,即,解得.故答案為:.【點睛】本題考查了平面向量的坐標運算應(yīng)用問題,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)【解析】

(1)證明,,即得證;(2)求出即得異面直線AC與所成角的大小.【詳解】(1)證明:因為為正方體,所以ABCD為正方形.所以,又因為平面ABCD,平面ABCD,故,又,平面,所以平面.(2)因為,所以直線AC與所成的角或補角即為AC與的角,又三角形為等邊三角形,所以,即直線AC與所成的角為.【點睛】本題主要考查線面位置關(guān)系的證明,考查異面直線所成角的計算,意在考查學(xué)生對這些知識的理解掌握水平.18、(1)見解析.(2).(3)噸.【解析】

(1)直接描點即可(2)計算出的平均數(shù),,及,,利用公式即可求得,問題得解.(3)將代入可得,結(jié)合已知即可得解.【詳解】解:(1)把所給的四對數(shù)據(jù)寫成對應(yīng)的點的坐標,在坐標系中描出來,得到散點圖;(2)計算,,,,∴回歸方程的系數(shù)為:.,∴所求線性回歸方程為;(3)利用線性回歸方程計算時,,則,即比技改前降低了19.65噸.【點睛】本題主要考查了線性回歸方程的求法,考查計算能力,還考查了線性回歸方程的應(yīng)用,屬于中檔題.19、(Ⅰ);(Ⅱ).【解析】

(1)本題可令求出的值,然后令求出,即可求出數(shù)列的通項公式;(2)首先可令,然后根據(jù)錯位相減法即可求出數(shù)列的前項和。【詳解】(1)當,,得.當時,,,兩式相減,得,化簡得,所以數(shù)列是首項為、公比為的等比數(shù)列,所以。(2)由(1)可知,令,則①,兩邊同乘以公比,得到②,由①②得:所以。【點睛】本題主要考查了數(shù)列通項的求法以及數(shù)列前項和的方法,求數(shù)列通項常用的方法有:累加法、累乘法、定義法、配湊法等;求數(shù)列前項和常用的方法有:錯位相減法、裂項相消法、公式法、分組求和法等,屬于中等題。20、(1);(2)最大值為,最小值為.【解析】

(1)利用兩角和的正弦公式以及二倍角的余弦公式、兩角和的余弦公式將函數(shù)的解析式化簡為,然后解不等式可得出函數(shù)的單調(diào)遞增區(qū)間;(2)由,可計算出,然后由余弦函數(shù)的基本性質(zhì)可求出函數(shù)在區(qū)間上的最大值和最小值.【詳解】(1),解不等式,得,因此,函數(shù)的單調(diào)遞增區(qū)間為;(2)當時,.當時,函數(shù)取得最大值;當時,函數(shù)取得最小值.【點睛】本題考查三角函數(shù)單調(diào)區(qū)間以及在定區(qū)間上最值的求解,解題時要利用三角恒等變換思想將三角函數(shù)的解析式化簡,并借助正弦函數(shù)或余弦函數(shù)的基本性質(zhì)進行求解,考查分析問題和解決問題的能力,屬于中等題.21、(1)見解析;(2)見解析.【解析】

(1)令,由求出的值,再令,由得,將兩式相減并整理得,計算

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論