




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
江蘇省蘇州高新區(qū)一中2024年高一下數(shù)學(xué)期末預(yù)測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如圖,中,,,用表示,正確的是()A. B.C. D.2.向量,若,則的值是()A. B. C. D.3.展開式中的常數(shù)項為()A.1 B.21 C.31 D.514.如圖,圓的半徑為1,是圓上的定點,是圓上的動點,角的始邊為射線,終邊為射線,過點作直線的垂線,垂足為,將點到直線的距離表示成的函數(shù),則在上的圖象大致為()A. B.C. D.5.在中,角對應(yīng)的邊分別是,已知,的面積為,則外接圓的直徑為()A. B. C. D.6.下列不等式中正確的是()A.若,,則B.若,則C.若,則D.若,則7.在中,角A,B,C所對的邊分別為a,b,c,,,,則等于()A. B. C. D.18.某市舉行“精英杯”數(shù)學(xué)挑戰(zhàn)賽,分初賽和復(fù)賽兩個階段進行,規(guī)定:初賽成績大于90分的具有復(fù)賽資格,某校所有學(xué)生的成績均在區(qū)間內(nèi),其頻率分布直方圖如圖所示,該校有130名學(xué)生獲得了復(fù)賽資格,則該校參加初賽的人數(shù)約為()A.200 B.400 C.2000 D.40009.已知,且,,這三個數(shù)可適當排序后成等差數(shù)列,也可適當排序后成等比數(shù)列,則()A.7 B.6 C.5 D.910.設(shè)且,則下列不等式成立的是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.黃金分割比是指將整體一分為二,較大部分與整體部分的比值等于較小部分與較大部分的比值,其比值為,約為0.618,這一數(shù)值也可以近似地用表示,則_____.12.化簡:.13.角的終邊經(jīng)過點,則___________________.14.已知三棱錐(如圖所示),平面,,,,則此三棱錐的外接球的表面積為______.15.下列關(guān)于函數(shù)與的命題中正確的結(jié)論是______.①它們互為反函數(shù);②都是增函數(shù);③都是周期函數(shù);④都是奇函數(shù).16.己知為數(shù)列的前項和,且,則_____.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知數(shù)列的前項和為,點在直線上.(1)求數(shù)列的通項公式;(2)設(shè),求數(shù)列的前項和.18.某體育老師隨機調(diào)查了100名同學(xué),詢問他們最喜歡的球類運動,統(tǒng)計數(shù)據(jù)如表所示.已知最喜歡足球的人數(shù)等于最喜歡排球和最喜歡羽毛球的人數(shù)之和.最喜歡的球類運動足球籃球排球乒乓球羽毛球網(wǎng)球人數(shù)a201015b5(1)求的值;(2)將足球、籃球、排球統(tǒng)稱為“大球”,將乒乓球、羽毛球、網(wǎng)球統(tǒng)稱為“小球”.現(xiàn)按照喜歡大、小球的人數(shù)用分層抽樣的方式從調(diào)查的同學(xué)中抽取5人,再從這5人中任選2人,求這2人中至少有一人喜歡小球的概率.19.已知點,,均在圓上.(1)求圓的方程;(2)若直線與圓相交于,兩點,求的長;(3)設(shè)過點的直線與圓相交于、兩點,試問:是否存在直線,使得恰好平分的外接圓?若存在,求出直線的方程;若不存在,請說明理由.20.在中,分別是所對的邊,若的面積是,,.求的長.21.已知等差數(shù)列的前n項和為,且,.(1)求;(2)設(shè)數(shù)列的前n項和為,求證:.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
由平面向量基本定理和三角形法則求解即可【詳解】由,可得,則,即.故選C.【點睛】本題考查平面向量基本定理和三角形法則,熟記定理和性質(zhì)是解題關(guān)鍵,是基礎(chǔ)題2、C【解析】
由平面向量的坐標運算與共線定理,列方程求出λ的值.【詳解】向量=(-4,5),=(λ,1),則-=(-4-λ,4),又(-)∥,所以-4-λ-4λ=0,解得λ=-.故選C.【點睛】本題考查了平面向量的坐標運算與共線定理應(yīng)用問題,是基礎(chǔ)題.3、D【解析】常數(shù)項有三種情況,都是次,或者都是次,或者都是二次,故常數(shù)項為4、B【解析】
計算函數(shù)的表達式,對比圖像得到答案.【詳解】根據(jù)題意知:到直線的距離為:對應(yīng)圖像為B故答案選B【點睛】本題考查了三角函數(shù)的應(yīng)用,意在考查學(xué)生的應(yīng)用能力.5、D【解析】
根據(jù)三角形面積公式求得;利用余弦定理求得;根據(jù)正弦定理求得結(jié)果.【詳解】由題意得:,解得:由余弦定理得:由正弦定理得外接圓的直徑為:本題正確選項:【點睛】本題考查正弦定理、余弦定理、三角形面積公式的綜合應(yīng)用問題,考查學(xué)生對于基礎(chǔ)公式和定理的掌握情況.6、D【解析】
根據(jù)不等式的性質(zhì)逐一判斷即可得解.【詳解】解:對于選項A,若,,不妨取,則,即A錯誤;對于選項B,若,當時,則,即B錯誤;對于選項C,若,不妨取,則,即C錯誤;對于選項D,若,則,即,,即D正確,故選:D.【點睛】本題考查了不等式的性質(zhì),屬基礎(chǔ)題.7、D【解析】
根據(jù)題意,由正弦定理得,再把,,代入求解.【詳解】由正弦定理,得,所以.故選:D【點睛】本題主要考查了正弦定理的應(yīng)用,還考查了運算求解的能力,屬于基礎(chǔ)題.8、A【解析】
由頻率和為1,可算得成績大于90分對應(yīng)的頻率,然后由頻數(shù)÷總數(shù)=頻率,即可得到本題答案.【詳解】由圖,得成績大于90分對應(yīng)的頻率=,設(shè)該校參加初賽的人數(shù)為x,則,得,所以該校參加初賽的人數(shù)約為200.故選:A【點睛】本題主要考查頻率直方圖的相關(guān)計算,涉及到頻率和為1以及頻數(shù)÷總數(shù)=頻率的應(yīng)用.9、C【解析】
由,可得成等比數(shù)列,即有=4;討論成等差數(shù)列或成等差數(shù)列,運用中項的性質(zhì),解方程可得,即可得到所求和.【詳解】由,可得成等比數(shù)列,即有=4,①若成等差數(shù)列,可得,②由①②可得,1;若成等差數(shù)列,可得,③由①③可得,1.綜上可得1.故選:C.【點睛】本題考查等差數(shù)列和等比數(shù)列的中項的性質(zhì),考查運算能力,屬于中檔題.10、A【解析】項,由得到,則,故項正確;項,當時,該不等式不成立,故項錯誤;項,當,時,,即不等式不成立,故項錯誤;項,當,時,,即不等式不成立,故項錯誤.綜上所述,故選.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
代入分式利用同角三角函數(shù)的平方關(guān)系、二倍角公式及三角函數(shù)誘導(dǎo)公式化簡即可.【詳解】.故答案為:2【點睛】本題考查同角三角函數(shù)的平方關(guān)系、二倍角公式及三角函數(shù)誘導(dǎo)公式,屬于基礎(chǔ)題.12、0【解析】原式=+=-sinα+sinα=0.13、【解析】
先求出到原點的距離,再利用正弦函數(shù)定義求解.【詳解】因為,所以到原點距離,故.故答案為:.【點睛】設(shè)始邊為的非負半軸,終邊經(jīng)過任意一點,則:14、【解析】
由于圖形特殊,可將圖形補成長方體,從而求長方體的外接球表面積即為所求.【詳解】,,,,平面,將三棱錐補形為如圖的長方體,則長方體的對角線,則【點睛】本題主要考查外接球的相關(guān)計算,將圖形補成長方體是解決本題的關(guān)鍵,意在考查學(xué)生的劃歸能力及空間想象能力.15、④【解析】
利用反函數(shù),增減性,周期函數(shù),奇偶性判斷即可【詳解】①,當時,的反函數(shù)是,故錯誤;②,當時,是增函數(shù),故錯誤;③,不是周期函數(shù),故錯誤;④,與都是奇函數(shù),故正確故答案為④【點睛】本題考查正弦函數(shù)及其反函數(shù)的性質(zhì),熟記其基本性質(zhì)是關(guān)鍵,是基礎(chǔ)題16、【解析】
根據(jù)可知,得到數(shù)列為等差數(shù)列;利用等差數(shù)列前項和公式構(gòu)造方程可求得;利用等差數(shù)列通項公式求得結(jié)果.【詳解】由得:,即:數(shù)列是公差為的等差數(shù)列又,解得:本題正確結(jié)果:【點睛】本題考查等差數(shù)列通項公式、前項和公式的應(yīng)用,關(guān)鍵是能夠利用判斷出數(shù)列為等差數(shù)列,進而利用等差數(shù)列中的相關(guān)公式來進行求解.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)先由題意得到,求出,再由,作出,得到數(shù)列為等比數(shù)列,進而可求出其通項公式;(2)先由(1)得到,再由錯位相減法,即可求出結(jié)果.【詳解】解:(1)由題可得.當時,,即.由題設(shè),,兩式相減得.所以是以2為首項,2為公比的等比數(shù)列,故.(2)由(1)可得,所以,.兩邊同乘以得.上式右邊錯位相減得.所以.化簡得.【點睛】本題主要考查求數(shù)列的通項公式,以及數(shù)列的前項和,熟記等比數(shù)列的通項公式與求和公式,以及錯位相減法求數(shù)列的和即可,屬于??碱}型.18、(1);(2)【解析】
(1)根據(jù)最喜歡足球的人數(shù)等于最喜歡排球和最喜歡羽毛球的人數(shù)之和,以及總?cè)藬?shù)列方程組求解;(2)利用分層抽樣,抽取的5人中,3人喜歡大球,2人喜歡小球,根據(jù)古典概型求解概率.【詳解】(1)由題最喜歡足球的人數(shù)等于最喜歡排球和最喜歡羽毛球的人數(shù)之和,所以,解得:,所以;(2)由題可得:喜歡大球的60人,喜歡小球的40人,按照分層抽樣抽取5人,其中喜歡大球的3人記為,喜歡小球的2人記為,從中任取2人,情況為:共10種,這兩人中,至少一人喜歡小球的情況:共7種,所以所求概率為;【點睛】此題考查統(tǒng)計與概率相關(guān)知識,涉及分層抽樣和求古典概型,關(guān)鍵在于弄清基本事件總數(shù)和某一事件包含的基本事件個數(shù).19、(1);(2);(3)存在,和.【解析】
(1)根據(jù)圓心在,的中垂線上,設(shè)圓心的坐標為,根據(jù)求出的值,從而可得結(jié)果;(2)利用點到直線的距離公式以及勾股定理可得結(jié)果;(3)首先驗證直線的斜率不存在時符合題意,然后斜率存在時,設(shè)出直線方程,與圓的方程聯(lián)立,利用韋達定理,根據(jù)列方程求解即可.【詳解】解:(1)由題意可得:圓心在直線上,設(shè)圓心的坐標為,則,解得,即圓心,所以半徑,所以圓的方程為;(2)圓心到直線的距離為:,;(3)設(shè),由題意可得:,且的斜率均存在,即,當直線的斜率不存在時,,則,滿足,故直線滿足題意,當直線的斜率存在時,設(shè)直線的方程為,由,消去得,則,由得,即,即,解得:,所以直線的方程為,綜上所述,存在滿足條件的直線和.【點睛】本題考查直線和圓的位置關(guān)系,注意對于直線要研究其斜率是否存在,另外利用韋達定理可以達到設(shè)而不求的目的,本題是中檔題.20、8【解析】
利用同角三角函數(shù)的基本關(guān)系式求得,利用三角形的面積公式列方程求得,結(jié)合求得,根據(jù)余弦定理求得的長.【詳解】由()得.因為的面積是,則,所以由解得.由余弦定理得,即的長是.【點睛】本小題主要考查同角三角函數(shù)的基本關(guān)系式,考查三角形的面積公式,考查余弦定理解三角形.21、(1);(2)見解析【解析】
(1)設(shè)公差為,由,可得解得,,從而
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年新泰市三上數(shù)學(xué)期末聯(lián)考試題含解析
- 前沿技術(shù)2025年執(zhí)業(yè)醫(yī)師考試試題及答案
- 常用藥物劑型選用原則試題及答案
- 2025年自考行政管理??祁I(lǐng)導(dǎo)力與試題答案
- 行政管理專業(yè)語言能力試題及答案
- 2025年執(zhí)業(yè)護士考試的社區(qū)護理重要性與試題及答案
- 2025年衛(wèi)生資格考試人際溝通技巧試題及答案
- 護士自我提升試題及答案解析
- 執(zhí)業(yè)醫(yī)師考試反向?qū)W習(xí)法探討試題及答案
- 2025年文化評估試題及答案
- 市教育局印鑒使用流程圖
- 2024年山西大地環(huán)境投資控股有限公司招聘筆試參考題庫含答案解析
- 《永遇樂·京口北固亭懷古》公開課獲獎教案設(shè)計
- 新編《民間非營利組織會計制度》解讀與操作指南
- 節(jié)能模壓高耐腐鋅鋁鎂彩鋼(PVDF涂層)耐火電纜橋架
- 智慧農(nóng)業(yè)種苗管理系統(tǒng)設(shè)計方案
- 醫(yī)院培訓(xùn)課件:《床旁快速檢測(POCT)》
- 人教版八年級物理下冊 實驗題04 機械能的實驗(含答案詳解)
- 醫(yī)院護理培訓(xùn)課件:《老年綜合評估與護理安全》
- 失能老人日常生活能力評分表
- 基礎(chǔ)工程之地基處理培訓(xùn)講義
評論
0/150
提交評論