版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
遼寧省丹東市第七中學(xué)2023-2024學(xué)年高一數(shù)學(xué)第二學(xué)期期末質(zhì)量跟蹤監(jiān)視試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.我國古代數(shù)學(xué)名著《九章算術(shù)》第六章“均輸”中有這樣一個(gè)問題:“今有五人分五錢,令上二人所得與下三人等,問各得幾何.”(注:“均輸”即按比例分配,此處是指五人所得成等差數(shù)列;“錢”是古代的一種計(jì)量單位),則分得最少的一個(gè)得到()A.錢 B.錢 C.錢 D.1錢2.已知直線,,若,則()A.2 B. C. D.13.在四邊形中,如果,,那么四邊形的形狀是()A.矩形 B.正方形 C.菱形 D.直角梯形4.已知,且,則()A. B.7 C. D.5.等差數(shù)列的前項(xiàng)和為.若,則()A. B. C. D.6.已知關(guān)于的不等式的解集是,則的值是()A. B. C. D.7.三棱錐中,平面且是邊長為的等邊三角形,則該三棱錐外接球的表面積為()A. B. C. D.8.設(shè)等比數(shù)列的公比,前項(xiàng)和為,則()A. B. C. D.9.若,是夾角為的兩個(gè)單位向量,則與的夾角為()A. B. C. D.10.已知,,則的最大值為()A.9 B.3 C.1 D.27二、填空題:本大題共6小題,每小題5分,共30分。11.過點(diǎn)作直線與圓相交,則在弦長為整數(shù)的所有直線中,等可能的任取一條直線,則弦長長度不超過14的概率為______________.12.過點(diǎn)作圓的兩條切線,切點(diǎn)分別為,則=.13.?dāng)?shù)列滿足,則的前60項(xiàng)和為_____.14.已知,則______.15.設(shè)是公差不為0的等差數(shù)列,且成等比數(shù)列,則的前10項(xiàng)和________.16.在中,,則______.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.在中,內(nèi)角,,的對(duì)邊分別為,,,已知.(Ⅰ)求角的值;(Ⅱ)若,且的面積為,求的值.18.若數(shù)列中存在三項(xiàng),按一定次序排列構(gòu)成等比數(shù)列,則稱為“等比源數(shù)列”。(1)在無窮數(shù)列中,,,求數(shù)列的通項(xiàng)公式;(2)在(1)的結(jié)論下,試判斷數(shù)列是否為“等比源數(shù)列”,并證明你的結(jié)論;(3)已知無窮數(shù)列為等差數(shù)列,且,(),求證:數(shù)列為“等比源數(shù)列”.19.已知等差數(shù)列滿足,,其前項(xiàng)和為.(1)求的通項(xiàng)公式及;(2)令,求數(shù)列的前項(xiàng)和,并求的值.20.已知和的交點(diǎn)為.(1)求經(jīng)過點(diǎn)且與直線垂直的直線的方程(2)直線經(jīng)過點(diǎn)與軸、軸交于、兩點(diǎn),且為線段的中點(diǎn),求的面積.21.如圖,是菱形,對(duì)角線與的交點(diǎn)為,四邊形為梯形,,.(1)若,求證:平面;(2)求證:平面平面;(3)若,求直線與平面所成角的余弦值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解析】
設(shè)所成等差數(shù)列的首項(xiàng)為,公差為,利用等差數(shù)列前項(xiàng)和公式及通項(xiàng)公式列出方程組,求出首項(xiàng)和公差,進(jìn)而得出答案.【詳解】由題意五人所分錢成等差數(shù)列,設(shè)得錢最多的為,則公差.所以,則.又,即則,分得最少的一個(gè)得到.故選:B【點(diǎn)睛】本題考查了等差數(shù)列的通項(xiàng)公式與求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.2、D【解析】
當(dāng)為,為,若,則,由此求解即可【詳解】由題,因?yàn)?所以,即,故選:D【點(diǎn)睛】本題考查已知直線垂直求參數(shù)問題,屬于基礎(chǔ)題3、C【解析】試題分析:因?yàn)?,所以,即四邊形的?duì)角線互相垂直,排除選項(xiàng)AD;又因?yàn)?,所以四邊形?duì)邊平行且相等,即四邊形為平行四邊形,但不能確定鄰邊垂直,所以只能確定為菱形.考點(diǎn):1.向量相等的定義;2.向量的垂直;4、D【解析】
由平方關(guān)系求得,再由商數(shù)關(guān)系求得,最后由兩角和的正切公式可計(jì)算.【詳解】,,,,.故選:D.【點(diǎn)睛】本題考查兩角和的正切公式,考查同角間的三角函數(shù)關(guān)系.屬于基礎(chǔ)題.5、D【解析】
根據(jù)等差數(shù)列片段和成等差數(shù)列,可得到,代入求得結(jié)果.【詳解】由等差數(shù)列性質(zhì)知:,,,成等差數(shù)列,即:本題正確選項(xiàng):【點(diǎn)睛】本題考查等差數(shù)列片段和性質(zhì)的應(yīng)用,關(guān)鍵是根據(jù)片段和成等差數(shù)列得到項(xiàng)之間的關(guān)系,屬于基礎(chǔ)題.6、A【解析】
先利用韋達(dá)定理得到關(guān)于a,b的方程組,解方程組即得a,b的值,即得解.【詳解】由題得,所以a+b=7.故選:A【點(diǎn)睛】本題主要考查一元二次不等式的解集,意在考查學(xué)生對(duì)該知識(shí)的理解掌握水平和分析推理能力.7、C【解析】根據(jù)已知中底面是邊長為的正三角形,,平面,可得此三棱錐外接球,即為以為底面以為高的正三棱柱的外接球
∵是邊長為的正三角形,∴的外接圓半徑球心到的外接圓圓心的距離故球的半徑故三棱錐外接球的表面積故選C.8、C【解析】
利用等比數(shù)列的前n項(xiàng)和公式表示出,利用等比數(shù)列的通項(xiàng)公式表示出,計(jì)算即可得出答案。【詳解】因?yàn)?,所以故選C【點(diǎn)睛】本題考查等比數(shù)列的通項(xiàng)公式與前n項(xiàng)和公式,屬于基礎(chǔ)題。9、A【解析】
根據(jù)條件可求出,,從而可求出,這樣即可求出,根據(jù)向量夾角的范圍即可求出夾角.【詳解】由題得;,,所以;;又;的夾角為.故選.【點(diǎn)睛】考查向量數(shù)量積的運(yùn)算及計(jì)算公式,向量長度的求法,向量夾角的余弦公式,向量夾角的范圍.10、B【解析】
由已知,可利用柯西不等式,構(gòu)造柯西不等式,即可求解.【詳解】由已知,可知,,利用柯西不等式,可構(gòu)造得,即,所以的最大值為3,故選B.【點(diǎn)睛】本題主要考查了柯西不等式的應(yīng)用,其中解答中熟記柯西不等式,合理構(gòu)造柯西不等式求解是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于中檔試題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
根據(jù)圓的性質(zhì)可求得最長弦和最短弦的長度,從而得到所有弦長為整數(shù)的直線條數(shù),從中找到長度不超過的直線條數(shù),根據(jù)古典概型求得結(jié)果.【詳解】由題意可知,最長弦為圓的直徑:在圓內(nèi)部且圓心到的距離為最短弦長為:弦長為整數(shù)的直線的條數(shù)有:條其中長度不超過的條數(shù)有:條所求概率:本題正確結(jié)果:【點(diǎn)睛】本題考查古典概型概率問題的求解,涉及到過圓內(nèi)一點(diǎn)的最長弦和最短弦的長度的求解;易錯(cuò)點(diǎn)是忽略圓的對(duì)稱性,造成在求解弦長為整數(shù)的直線的條數(shù)時(shí)出現(xiàn)丟根的情況.12、【解析】
如圖,連接,在直角三角形中,所以,,,故.考點(diǎn):1.直線與圓的位置關(guān)系;2.平面向量的數(shù)量積.13、1830【解析】
由題意可得,,,,,,…,,變形可得,,,,,,,,…,利用數(shù)列的結(jié)構(gòu)特征,求出的前60項(xiàng)和.【詳解】解:,∴,,,,,,…,,∴,,,,,,,,…,從第一項(xiàng)開始,依次取2個(gè)相鄰奇數(shù)項(xiàng)的和都等于2,從第二項(xiàng)開始,依次取2個(gè)相鄰偶數(shù)項(xiàng)的和構(gòu)成以8為首項(xiàng),以16為公差的等差數(shù)列,的前60項(xiàng)和為,故答案為:.【點(diǎn)睛】本題主要考查遞推公式的應(yīng)用,考查利用構(gòu)造等差數(shù)列求數(shù)列的前項(xiàng)和,屬于中檔題.14、【解析】
由題意得出,然后在分式的分子和分母中同時(shí)除以,然后利用常見的數(shù)列極限可計(jì)算出所求極限值.【詳解】由題意得出.故答案為:.【點(diǎn)睛】本題考查數(shù)列極限的計(jì)算,熟悉一些常見數(shù)列極限是解題的關(guān)鍵,考查計(jì)算能力,屬于基礎(chǔ)題.15、【解析】
利用等差數(shù)列的通項(xiàng)公式和等比數(shù)列的性質(zhì)求出公差,由此能求出【詳解】因?yàn)槭枪畈粸?的等差數(shù)列,且成等比數(shù)列所以,即解得或(舍)所以故答案為:【點(diǎn)睛】本題考查等差數(shù)列前10項(xiàng)和的求法,解題時(shí)要認(rèn)真審題,注意等比數(shù)列的性質(zhì)合理運(yùn)用.16、【解析】
由已知求得,進(jìn)一步求得,即可求出.【詳解】由,得,即,,則,,,則.【點(diǎn)睛】本題主要考查應(yīng)用兩角和的正切公式作三角函數(shù)的恒等變換與化簡求值.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ)【解析】
(Ⅰ)利用,化簡得,然后利用正弦定理和余弦定理求解即可.(Ⅱ)利用面積公式得,得到,再利用,即可求解.【詳解】(Ⅰ)由題意知,即,由正弦定理,得,①,由余弦定理,得,又因?yàn)?,所以.(Ⅱ)因?yàn)?,,由面積公式得,即.由①得,故,即.【點(diǎn)睛】本題考查正弦和余弦定理的應(yīng)用,屬于基礎(chǔ)題.18、(1);(2)不是,證明見解析;(3)證明見解析.【解析】
(1)由,可得出,則數(shù)列為等比數(shù)列,然后利用等比數(shù)列的通項(xiàng)公式可間接求出;(2)假設(shè)數(shù)列為“等比源數(shù)列”,則此數(shù)列中存在三項(xiàng)成等比數(shù)列,可得出,展開后得出,然后利用數(shù)的奇偶性即可得出結(jié)論;(3)設(shè)等差數(shù)列的公差為,假設(shè)存在三項(xiàng)使得,展開得出,從而可得知,當(dāng),時(shí),原命題成立.【詳解】(1),得,即,且.所以,數(shù)列是以為首項(xiàng),以為公比的等比數(shù)列,則,因此,;(2)數(shù)列不是“等比源數(shù)列”,下面用反證法來證明.假設(shè)數(shù)列是“等比源數(shù)列”,則存在三項(xiàng)、、,設(shè).由于數(shù)列為單調(diào)遞增的正項(xiàng)數(shù)列,則,所以.得,化簡得,等式兩邊同時(shí)除以得,,且、、,則,,,,則為偶數(shù),為奇數(shù),等式不成立.因此,數(shù)列中不存在任何三項(xiàng),按一定的順序排列構(gòu)成“等比源數(shù)列”;(3)不妨設(shè)等差數(shù)列的公差.當(dāng)時(shí),等差數(shù)列為非零常數(shù)列,此時(shí),數(shù)列為“等比源數(shù)列”;當(dāng)時(shí),,則且,數(shù)列中必有一項(xiàng),為了使得數(shù)列為“等比源數(shù)列”,只需數(shù)列中存在第項(xiàng)、第項(xiàng)使得,且有,即,,當(dāng)時(shí),即當(dāng),時(shí),等式成立,所以,數(shù)列中存在、、成等比數(shù)列,因此,等差數(shù)列是“等比源數(shù)列”.【點(diǎn)睛】本題考查數(shù)列新定義“等比源數(shù)列”的應(yīng)用,同時(shí)也考查了利用待定系數(shù)法求數(shù)列的通項(xiàng),也考查“等比源數(shù)列”的證明,考查計(jì)算能力與推理能力,屬于難題.19、(1),;(2),【解析】
(1)利用等差數(shù)列的通項(xiàng)公式及前n項(xiàng)的和公式可得答案;(2)利用“裂項(xiàng)求和”法可得答案.【詳解】解:(1)設(shè)等差數(shù)列的公差為,由,得,又,解得.所以.所以.(2)由,得.設(shè)的前項(xiàng)和為,則.【點(diǎn)睛】本題主要考查等差數(shù)列的通項(xiàng)公式及前n項(xiàng)的和,及數(shù)列求和的“裂項(xiàng)相消法”,屬于中檔題.20、(1);(2)2【解析】
(1)聯(lián)立兩條直線的方程,解方程組求得點(diǎn)坐標(biāo),根據(jù)的斜率求得與其垂直直線的斜率,根據(jù)點(diǎn)斜式求得所求直線方程.(2)根據(jù)(1)中點(diǎn)的坐標(biāo)以及為中點(diǎn)這一條件,求得兩點(diǎn)的坐標(biāo),進(jìn)而求得三角形的面積.【詳解】解:(1)聯(lián)立,解得交點(diǎn)的坐標(biāo)為,∵與垂直,∴的斜率,∴的方程為,即.(2)∵為的中點(diǎn),已知,,即,∴【點(diǎn)睛】本小題主要考查兩條直線交點(diǎn)坐標(biāo)的求法,考查兩條直線垂直斜率的關(guān)系,考查直線的點(diǎn)斜式方程,考查三角形的面積公式以及中點(diǎn)坐標(biāo),屬于基礎(chǔ)題.21、(1)證明見解析;(2)證明見解析;(3)【解析】
(1)取的中點(diǎn),連接,,從而可得為平行四邊形,即可證明平面;(2)只需證明平面.即可證明平面平面;(3)作于,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024物業(yè)管理合同包干制-智能家居系統(tǒng)合作協(xié)議2篇
- 2024水利工程合同完整協(xié)議
- 2024高端裝備制造技術(shù)引進(jìn)與代理合同
- 二零二五年度小額貸款公司貸款延期還款協(xié)議范本與風(fēng)險(xiǎn)控制3篇
- 二零二五年度家庭共有房屋分割協(xié)議書標(biāo)準(zhǔn)模板3篇
- 二零二五年度模具研發(fā)與市場戰(zhàn)略合作伙伴協(xié)議3篇
- 2025年度“魔百和”虛擬偶像娛樂內(nèi)容制作與授權(quán)協(xié)議3篇
- 2024年航空公司客艙內(nèi)飾改造合同
- 2024皮革原料采購與加工一體化合同范本2篇
- 二零二五年度工字鋼租賃與橋梁維修合同3篇
- Unit 3 We should obey the rules. Lesson15(說課稿)-2023-2024學(xué)年人教精通版英語五年級(jí)下冊(cè)
- 兒科護(hù)理安全警示課件
- 借條的正規(guī)模板(2024版)
- 建設(shè)工程監(jiān)理費(fèi)計(jì)算器(免費(fèi))
- 合理化建議與管理創(chuàng)新獎(jiǎng)勵(lì)制
- 擠出機(jī)設(shè)備操作規(guī)程
- 洗胃操作流程及評(píng)分標(biāo)準(zhǔn)
- CRISPR基因編輯技術(shù)PPT課件
- 地下連續(xù)墻拆除方案
- 二年級(jí)上冊(cè)數(shù)學(xué)期中試卷
- 建材公司財(cái)務(wù)管理制度
評(píng)論
0/150
提交評(píng)論