江西省南昌市進賢一中2024屆高一數(shù)學(xué)第二學(xué)期期末聯(lián)考模擬試題含解析_第1頁
江西省南昌市進賢一中2024屆高一數(shù)學(xué)第二學(xué)期期末聯(lián)考模擬試題含解析_第2頁
江西省南昌市進賢一中2024屆高一數(shù)學(xué)第二學(xué)期期末聯(lián)考模擬試題含解析_第3頁
江西省南昌市進賢一中2024屆高一數(shù)學(xué)第二學(xué)期期末聯(lián)考模擬試題含解析_第4頁
江西省南昌市進賢一中2024屆高一數(shù)學(xué)第二學(xué)期期末聯(lián)考模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

江西省南昌市進賢一中2024屆高一數(shù)學(xué)第二學(xué)期期末聯(lián)考模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在中,角所對的邊分別為.若,,,則等于()A. B. C. D.2.已知與之間的幾組數(shù)據(jù)如下表則與的線性回歸方程必過()A.點 B.點C.點 D.點3.以橢圓的兩個焦點為直徑的端點的圓與橢圓交于四個不同的點,順次連接這四個點和兩個焦點恰好組成一個正六邊形,那么這個橢圓的離心率為()A. B. C. D.4.如右圖所示的直觀圖,其表示的平面圖形是(A)正三角形(B)銳角三角形(C)鈍角三角形(D)直角三角形5.已知等差數(shù)列{an},若a2=10,a5=1,則{an}的前7項和為A.112 B.51 C.28 D.186.過點P(0,2)作直線x+my﹣4=0的垂線,垂足為Q,則Q到直線x+2y﹣14=0的距離最小值為()A.0 B.2 C. D.27.已知實數(shù)m,n滿足不等式組則關(guān)于x的方程x2-(3m+2n)x+6mn=0的兩根之和的最大值和最小值分別是()A.7,-4 B.8,-8C.4,-7 D.6,-68.圓心為且過原點的圓的方程是()A.B.C.D.9.如圖,有一輛汽車在一條水平的公路上向正西行駛,汽車在點測得公路北側(cè)山頂?shù)难鼋菫?0°,汽車行駛后到達點測得山頂在北偏西30°方向上,且仰角為45°,則山的高度為()A. B. C. D.10.在正方體中,異面直線與所成的角為()A.30° B.45° C.60° D.90°二、填空題:本大題共6小題,每小題5分,共30分。11.在數(shù)列中,,是其前項和,當(dāng)時,恒有、、成等比數(shù)列,則________.12.若三角形ABC的三個角A,B,C成等差數(shù)列,a,b,c分別為角A,B,C的對邊,三角形ABC的面積,則b的最小值是________.13.某空間幾何體的三視圖如圖所示,則該幾何體的體積為________14.若甲、乙、丙三人隨機地站成一排,則甲、乙兩人相鄰而站的概率為_________.15.平面⊥平面,,,,直線,則直線與的位置關(guān)系是___.16.若三邊長分別為3,5,的三角形是銳角三角形,則的取值范圍為______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知邊長為2的等邊,是邊的中點,以為旋轉(zhuǎn)中心,逆時針旋轉(zhuǎn)得對應(yīng),與所在直線交于.(1)任意旋轉(zhuǎn)角,判斷是否是定值.若是,求此定值;若不是,說明理由.(2)求的最小值.18.在中,角對應(yīng)的邊分別是,且.(1)求角;(2)若,求的取值范圍.19.設(shè)是一個公比為q的等比數(shù)列,且,,成等差數(shù)列.(1)求q;(2)若數(shù)列前4項的和,令(),求數(shù)列的前n項和.20.已知直角梯形中,,,,,,過作,垂足為,分別為的中點,現(xiàn)將沿折疊,使得.(1)求證:(2)在線段上找一點,使得,并說明理由.21.某建筑公司用8000萬元購得一塊空地,計劃在該地塊上建造一棟至少12層、每層4000平方米的樓房.經(jīng)初步估計得知,如果將樓房建為x(x≥12)層,則每平方米的平均建筑費用為Q(x)=3000+50x(單位:元).(1)求樓房每平方米的平均綜合費用f(x)的解析式.(2)為了使樓房每平方米的平均綜合費用最少,該樓房應(yīng)建為多少層?每平方米的平均綜合費用最小值是多少?(注:平均綜合費用=平均建筑費用+平均購地費用,平均購地費用=)

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

利用正弦定理可求.【詳解】由正弦定理得.故選B.【點睛】本題考查正弦定理的應(yīng)用,屬于容易題.2、C【解析】

根據(jù)線性回歸方程必過樣本中心點,即可得到結(jié)論.【詳解】,,8根據(jù)線性回歸方程必過樣本中心點,可得與的線性回歸方程必過.故選:C.【點睛】本題考查線性回歸方程,解題的關(guān)鍵是利用線性回歸方程必過樣本中心點,屬于基礎(chǔ)題.3、D【解析】

四個交點中的任何一個到焦點的距離和都是,然后分析正六邊形中的長度和焦距的關(guān)系,從而建立等式求解.【詳解】設(shè)橢圓的焦點是,圓與橢圓的四個交點是,設(shè),,,,.故選D.【點睛】本題考查了橢圓的定義和橢圓的性質(zhì),屬于基礎(chǔ)題型4、D【解析】略5、C【解析】

根據(jù)等差數(shù)列的通項公式和已知條件列出關(guān)于數(shù)列的首項和公差的方程組,解出數(shù)列的首項和公差,再根據(jù)等差數(shù)列的前項和可得解.【詳解】由等差數(shù)列的通項公式結(jié)合題意有:,解得:,則數(shù)列的前7項和為:,故選:C.【點睛】本題考查等差數(shù)列的通項公式和前項公式,屬于基礎(chǔ)題.6、C【解析】

由直線過定點,得到的中點,由垂直直線,得到點在以點為圓心,以為半徑的圓,求得圓的方程,由此求出到直線的距離最小值,得到答案.【詳解】由題意,過點作直線的垂線,垂足為,直線過定點,由中點公式可得,的中點,由垂直直線,所以點點在以點為圓心,以為半徑的圓,其圓的方程為,則圓心到直線的距離為所以點到直線的距離最小值;,故選:C.【點睛】本題主要考查了圓的標準方程,直線與圓的位置關(guān)系的應(yīng)用,同時涉及到點到直線的距離公式的應(yīng)用,著重考查了推理與計算能力,以及分析問題和解答問題的能力,試題綜合性強,屬于中檔試題.7、A【解析】由題意得,方程的兩根之和,畫出約束條件所表示的平面區(qū)域,如圖所示,由,可得,此時,由,可得,此時,故選A.8、D【解析】試題分析:設(shè)圓的方程為,且圓過原點,即,得,所以圓的方程為.故選D.考點:圓的一般方程.9、D【解析】

通過題意可知:,設(shè)山的高度,分別在中求出,最后在中,利用余弦定理,列出方程,解方程求出的值.【詳解】由題意可知:.在中,.在中,.在中,由余弦定理可得:(舍去),故本題選D.【點睛】本題考查了余弦定理的應(yīng)用,弄清題目中各個角的含義是解題的關(guān)鍵.10、C【解析】

首先由可得是異面直線和所成角,再由為正三角形即可求解.【詳解】連接.因為為正方體,所以,則是異面直線和所成角.又,可得為等邊三角形,則,所以異面直線與所成角為,故選:C【點睛】本題考查異面直線所成的角,利用平行構(gòu)造三角形或平行四邊形是關(guān)鍵,考查了空間想象能力和推理能力,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、.【解析】

由題意得出,當(dāng)時,由,代入,化簡得出,利用倒數(shù)法求出的通項公式,從而得出的表達式,于是可求出的值.【詳解】當(dāng)時,由題意可得,即,化簡得,得,兩邊取倒數(shù)得,,所以,數(shù)列是以為首項,以為公差的等差數(shù)列,,,則,因此,,故答案為:.【點睛】本題考查數(shù)列極限的計算,同時也考查了數(shù)列通項的求解,在含的數(shù)列遞推式中,若作差法不能求通項時,可利用轉(zhuǎn)化為的遞推公式求通項,考查分析問題和解決問題的能力,綜合性較強,屬于中等題.12、【解析】

先求出,再根據(jù)面積得到,再利用余弦定理和基本不等式得解.【詳解】由題得,所以.由余弦定理得,當(dāng)且僅當(dāng)時取等.所以b的最小值是.故答案為:【點睛】本題主要考查余弦定理解三角形,考查基本不等式求最值,意在考查學(xué)生對這些知識的理解掌握水平.13、2【解析】

根據(jù)三視圖還原幾何體,為一個底面是直角梯形的四棱錐,根據(jù)三視圖的數(shù)據(jù),分別求出其底面積和高,求出體積,得到答案.【詳解】由三視圖還原幾何體如圖所示,幾何體是一個底面是直角梯形的四棱錐,由三視圖可知,其底面積為,高所以幾何體的體積為.故答案為.【點睛】本題考查三視圖還原幾何體,求四棱錐的體積,屬于簡單題.14、【解析】記甲、乙兩人相鄰而站為事件A甲、乙、丙三人隨機地站成一排的所有排法有=6,則甲、乙兩人相鄰而站的戰(zhàn)法有=4種站法∴=15、【解析】

利用面面垂直的性質(zhì)定理得到平面,又直線,利用線面垂直性質(zhì)定理得.【詳解】在長方體中,設(shè)平面為平面,平面為平面,直線為直線,由于,,由面面垂直的性質(zhì)定理可得:平面,因為,由線面垂直的性質(zhì)定理,可得.【點睛】空間中點、線、面的位置關(guān)系問題,一般是利用線面平行或垂直的判定定理或性質(zhì)定理進行求解.16、【解析】

由三邊長分別為3,5,的三角形是銳角三角形,若5是最大邊,則,解得范圍,若是最大邊,則,解得范圍,即可得出.【詳解】解:由三邊長分別為3,5,的三角形是銳角三角形,若5是最大邊,則,解得.若是最大邊,則,解得.綜上可得:的取值范圍為.故答案為:.【點睛】本題考查了不等式的性質(zhì)與解法、余弦定理、分類討論方法,考查了推理能力與計算能力,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)是,0;(2).【解析】

(1)以為坐標原點,所在直線為軸,所在直線為軸建立平面直角坐標系,得出的坐標,計算得出,進而得出;(2)根據(jù)得出點的軌跡是以為直徑的圓,由圓的對稱性得出的最小值.【詳解】(1)以為坐標原點,所在直線為軸,所在直線為軸建立平面直角坐標系則,即∴設(shè),則所以為定值,定值為(2)由(1)知,故在以為直徑的圓上設(shè)的中點,則,以為直徑的圓的半徑由圓的對稱性可知,的最小值是.【點睛】本題主要考查了計算向量的數(shù)量積以及圓對稱性的應(yīng)用,屬于中檔題.18、(1);(2).【解析】

(1)依照條件形式,使用正弦定理化角為邊,再用余弦定理求出,從而得出角的值;(2)先利用余弦定理找出的關(guān)系,再利用基本不等式放縮,求出的取值范圍.【詳解】(1)由及正弦定理得,,由余弦定理得,又,所以(2)由及,得,即所以,所以,當(dāng)且僅當(dāng)時,等號成立,又,所以.【點睛】本題主要考查利用正余弦定理解三角形,以及利用基本不等式求等式條件下的取值范圍問題,第二問也可以采用正弦定理化邊為角,利用“同一法”求出的取值范圍.19、(1),(2)或【解析】

(1)根據(jù),,成等差數(shù)列,得到,解得答案.(2)討論和兩種情況,利用錯位相減法計算得到答案.【詳解】(1)因為是一個公比為q的等比數(shù)列,所以.因為,,成等差數(shù)列,所以即.解得,.(2)①若,又它的前4和,得,解得所以,因為,(),∴,,∴,∴②若,又它的前4和,即,因為,(),所以.【點睛】本題考查了等比數(shù)列的計算,錯位相減法,意在考查學(xué)生對于數(shù)列公式方法的綜合應(yīng)用.20、(1)見解析(2)【解析】試題分析:(Ⅰ)由已知得:面面;(II)分析可知,點滿足時,面BDR⊥面BDC.

理由如下先計算再求得,

,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論