2023-2024學年浙江省諸暨市牌頭中學高一下數(shù)學期末聯(lián)考模擬試題含解析_第1頁
2023-2024學年浙江省諸暨市牌頭中學高一下數(shù)學期末聯(lián)考模擬試題含解析_第2頁
2023-2024學年浙江省諸暨市牌頭中學高一下數(shù)學期末聯(lián)考模擬試題含解析_第3頁
2023-2024學年浙江省諸暨市牌頭中學高一下數(shù)學期末聯(lián)考模擬試題含解析_第4頁
2023-2024學年浙江省諸暨市牌頭中學高一下數(shù)學期末聯(lián)考模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年浙江省諸暨市牌頭中學高一下數(shù)學期末聯(lián)考模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.函數(shù)的大致圖像是下列哪個選項()A. B.C. D.2.設滿足約束條件則的最大值為().A.10 B.8 C.3 D.23.已知O,N,P在所在平面內,且,,且,則點O,N,P依次是的()A.重心外心垂心 B.重心外心內心C.外心重心垂心 D.外心重心內心4.若函數(shù),則()A.9 B.1 C. D.05.在中,,則一定是()A.等腰三角形 B.直角三角形C.等邊三角形 D.等腰直角三角形6.若是2與8的等比中項,則等于()A. B. C. D.327.設集合A={x|x≥–3},B={x|–3<x<1},則A∪B=()A.{x|x>–3} B.{x|x<1}C.{x|x≥–3} D.{x|–3≤x<1}8.在△ABC中,,P是BN上的一點,若,則實數(shù)m的值為A.3 B.1 C. D.9.經(jīng)過原點且傾斜角為的直線被圓C:截得的弦長是,則圓在軸下方部分與軸圍成的圖形的面積等于()A. B. C. D.10.等差數(shù)列的前項和為.若,則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.弧度制是數(shù)學上一種度量角的單位制,數(shù)學家歐拉在他的著作《無窮小分析概論》中提出把圓的半徑作為弧長的度量單位.已知一個扇形的弧長等于其半徑長,則該扇形圓心角的弧度數(shù)是__________.12.在中,,,則的值為________13.函數(shù)f(x)=2cos(x)﹣1的對稱軸為_____,最小值為_____.14.執(zhí)行如圖所示的程序框圖,則輸出的結果為__________.15.函數(shù)的值域為______.16.已知在中,角A,B,C的對邊分別為a,b,c,,,的面積等于,則外接圓的面積為______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知圓經(jīng)過(2,5),(﹣2,1)兩點,并且圓心在直線yx上.(1)求圓的標準方程;(2)求圓上的點到直線3x﹣4y+23=0的最小距離.18.已知直線經(jīng)過兩條直線:和:的交點,直線:;(1)若,求的直線方程;(2)若,求的直線方程.19.(1)解方程:;(2)有四個數(shù),其中前三個數(shù)成等差數(shù)列,后三個數(shù)成等比數(shù)列,且第一個數(shù)與第四個數(shù)的和是16,第二個數(shù)與第三個數(shù)的和是12,求這四個數(shù);20.已知等差數(shù)列中,,,數(shù)列中,,其前項和滿足:.(1)求數(shù)列、的通項公式;(2)設,求數(shù)列的前項和.21.已知向量,,.(1)若、、三點共線,求;(2)求的面積.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

化簡,然后作圖,值域小于部分翻折關于軸對稱即可.【詳解】,的圖象與關于軸對稱,將部分向上翻折,圖象變化過程如下:軸上方部分圖形即為所求圖象.故選:B.【點睛】本題主要考查圖形的對稱變化,掌握關于軸對稱是解決問題的關鍵.屬于中檔題.2、B【解析】

作出可行域,化目標函數(shù)為直線方程的斜截式,數(shù)形結合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標,代入目標函數(shù)即可求解.【詳解】作出可行域如圖:化目標函數(shù)為,聯(lián)立,解得.由圖象可知,當直線過點A時,直線在y軸上截距最小,有最大值.【點睛】本題主要考查了簡單的線性規(guī)劃,數(shù)形結合的思想,屬于中檔題.3、C【解析】

根據(jù)向量關系,,所在直線經(jīng)過中點,由得,即可得解.【詳解】由題:,所以O是外接圓的圓心,取中點,,,即所在直線經(jīng)過中點,與中線共線,同理可得分別與邊的中線共線,即N是三角形三條中線交點,即重心,,,,,即,同理可得,即P是三角形的垂心.故選:C【點睛】此題考查利用向量關系判別三角形的外心,重心和垂心,關鍵在于準確進行向量的運算,根據(jù)運算結果得結論.4、B【解析】

根據(jù)的解析式即可求出,進而求出的值.【詳解】∵,∴,故,故選B.【點睛】本題主要考查分段函數(shù)的概念,以及已知函數(shù)求值的方法,屬于基礎題.5、B【解析】

利用余弦定理、三角形面積公式、正弦定理,求得和,通過等式消去,求得的兩個值,再判斷三角形的形狀.【詳解】,又,,,又,,又,,,,,,解得:或,一定是直角三角形.【點睛】本題在求解過程中對存在兩組解,要注意解答的完整性與嚴謹性,綜合兩種情況,再對的形狀作出判斷.6、B【解析】

利用等比中項性質列出等式,解出即可?!驹斀狻坑深}意知,,∴.故選B【點睛】本題考查等比中項,屬于基礎題。7、C【解析】

根據(jù)并集的運算律可計算出集合A∪B.【詳解】∵A=xx≥-3,B=x故選:C.【點睛】本題考查集合的并集運算,解題的關鍵就是并集運算律的應用,考查計算能力,屬于基礎題.8、C【解析】分析:根據(jù)向量的加減運算法則,通過,把用和表示出來,可得的值.詳解:如圖:∵,,

又三點共線,故得.

故選C..點睛:本題考查實數(shù)值的求法,是基礎題,解題時要認真審題,注意平面向量加法法則的合理運用.9、A【解析】

由已知利用垂徑定理求得,得到圓的半徑,畫出圖形,由扇形面積減去三角形面積求解.【詳解】解:直線方程為,圓的圓心坐標為,半徑為.圓心到直線的距離.則,解得.圓的圓心坐標為,半徑為1.如圖,,則,.,,圓在軸下方部分與軸圍成的圖形的面積等于.故選:.【點睛】本題考查直線與圓位置關系的應用,考查扇形面積的求法,考查計算能力,屬于中檔題.10、D【解析】

根據(jù)等差數(shù)列片段和成等差數(shù)列,可得到,代入求得結果.【詳解】由等差數(shù)列性質知:,,,成等差數(shù)列,即:本題正確選項:【點睛】本題考查等差數(shù)列片段和性質的應用,關鍵是根據(jù)片段和成等差數(shù)列得到項之間的關系,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、1【解析】設扇形的弧長和半徑長為,由弧度制的定義可得,該扇形圓心角的弧度數(shù)是.12、【解析】

由,得到,由三角形的內角和,求出,再由正弦定理求出的值.【詳解】因為,,所以,所以,在中,由正弦定理得,所以.【點睛】本題考查正弦定理解三角形,屬于簡單題.13、﹣3【解析】

利用余弦函數(shù)的圖象的對稱性,余弦函數(shù)的最值,求得結論.【詳解】解:對于函數(shù),令,求得,根據(jù)余弦函數(shù)的值域可得函數(shù)的最小值為,故答案為:;.【點睛】本題主要考查余弦函數(shù)的圖象的對稱性,余弦函數(shù)的最值,屬于基礎題.14、1【解析】

由已知中的程序語句可知:該程序的功能是利用循環(huán)結構計算S的值并輸出變量i的值,模擬程序的運行過程,分析循環(huán)中各變量值的變化情況,可得答案.【詳解】模擬程序的運行,可得

S=1,i=1

滿足條件S<40,執(zhí)行循環(huán)體,S=3,i=2

滿足條件S<40,執(zhí)行循環(huán)體,S=7,i=3

滿足條件S<40,執(zhí)行循環(huán)體,S=15,i=4

滿足條件S<40,執(zhí)行循環(huán)體,S=31,i=5

滿足條件S<40,執(zhí)行循環(huán)體,S=13,i=1

此時,不滿足條件S<40,退出循環(huán),輸出i的值為1.

故答案為:1.【點睛】本題主要考查的是程序框圖,屬于基礎題.在給出程序框圖求解輸出結果的試題中只要按照程序框圖規(guī)定的運算方法逐次計算,直到達到輸出條件即可.15、【解析】

由反三角函數(shù)的性質得到,即可求得函數(shù)的值域.【詳解】由,則,,又,,即,函數(shù)的值域為.故答案:.【點睛】本題考查反三角函數(shù)的性質及其應用,屬于基礎題.16、4π【解析】

利用三角形面積公式求解,再利用余弦定理求得,進而得到外接圓半徑,再求面積即可.【詳解】由,解得..解得.,解得.∴△ABC外接圓的面積為4π.故答案為:4π.【點睛】本題主要考查了解三角形中正余弦與面積公式的運用,屬于基礎題型.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(x﹣2)2+(y﹣1)2=16(2)1【解析】

(1)先求出圓心的坐標和圓的半徑,即得圓的標準方程;(2)求出圓心到直線3x﹣4y+23=0的距離即得解.【詳解】(1)A(2,5),B(﹣2,1)中點為(0,3),經(jīng)過A(2,5),B(﹣2,1)的直線的斜率為,所以線段AB中垂線方程為,聯(lián)立直線方程y解得圓心坐標為(2,1),所以圓的半徑.所以圓的標準方程為(x﹣2)2+(y﹣1)2=16.(2)圓的圓心為(2,1),半徑r=4.圓心到直線3x﹣4y+23=0的距離d.則圓上的點到直線3x﹣4y+23=0的最小距離為d﹣r=1.【點睛】本題主要考查圓的標準方程的求法和圓上的點到直線的距離的最值的求法,意在考查學生對這些知識的理解掌握水平.18、(1);(2)【解析】

(1)先求出與的交點,再利用兩直線平行斜率相等求直線l(2)利用兩直線垂直斜率乘積等于-1求直線l【詳解】(1)由,得,∴與的交點為.設與直線平行的直線為,則,∴.∴所求直線方程為.(2)設與直線垂直的直線為,則,解得.∴所求直線方程為.【點睛】兩直線平行斜率相等,兩直線垂直斜率乘積等于-1.19、(1)或。(2)、、、,或、、、【解析】

(1)由正弦的倍角公式,化簡得,得到解得或,結合正弦和余弦的性質,即可求解;(2)設這四個數(shù)分別為,得到,且,即可求解,得到答案.【詳解】(1)由題意,方程,可得,即,解得或,所以或.(2)由題意,設這四個數(shù)分別為,可得,且,解得:或,所以這四個數(shù)為:、、、,或、、、.【點睛】本題主要考查了三角方程的求解,以及等差、等比中項的應用,其中解答中熟記三角恒等變換的公式,以及等差、等比數(shù)列中項公式,準確計算是解答的關鍵,著重考查了推理與計算能力,屬于基礎題.20、(1)(2)【解析】試題分析:(1)對于求得首項和公差即可求得數(shù)列的通項公式,對于,利用遞推關系求解數(shù)列的通項公式即可;(2)利用數(shù)列的特點錯位相減求解數(shù)列的前n項和即可.試題解析:(I)①②①-②得,為等比數(shù)列,(II)由兩式相減,得點睛:一般地,如果數(shù)列{an}是等差數(shù)列,{bn}是等比數(shù)列,求數(shù)列{an·bn}的前n項和時,可采用

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論