2024屆山東省濟(jì)寧市兗州市中考數(shù)學(xué)最后一模試卷含解析_第1頁(yè)
2024屆山東省濟(jì)寧市兗州市中考數(shù)學(xué)最后一模試卷含解析_第2頁(yè)
2024屆山東省濟(jì)寧市兗州市中考數(shù)學(xué)最后一模試卷含解析_第3頁(yè)
2024屆山東省濟(jì)寧市兗州市中考數(shù)學(xué)最后一模試卷含解析_第4頁(yè)
2024屆山東省濟(jì)寧市兗州市中考數(shù)學(xué)最后一模試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩19頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆山東省濟(jì)寧市兗州市中考數(shù)學(xué)最后一模試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.如圖,若AB∥CD,則α、β、γ之間的關(guān)系為()A.α+β+γ=360° B.α﹣β+γ=180°C.α+β﹣γ=180° D.α+β+γ=180°2.在Rt△ABC中∠C=90°,∠A、∠B、∠C的對(duì)邊分別為a、b、c,c=3a,tanA的值為()A. B. C. D.33.將二次函數(shù)的圖象先向左平移1個(gè)單位,再向下平移2個(gè)單位,所得圖象對(duì)應(yīng)的函數(shù)表達(dá)式是()A. B.C. D.4.如圖,在平行線l1、l2之間放置一塊直角三角板,三角板的銳角頂點(diǎn)A,B分別在直線l1、l2上,若∠l=65°,則∠2的度數(shù)是()A.25° B.35° C.45° D.65°5.如圖,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,若AD=3,BE=1,則DE=()A.1 B.2 C.3 D.46.如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A(1,0),B(2,0),正六邊形ABCDEF沿x軸正方向無滑動(dòng)滾動(dòng),每旋轉(zhuǎn)60°為滾動(dòng)1次,那么當(dāng)正六邊形ABCDEF滾動(dòng)2017次時(shí),點(diǎn)F的坐標(biāo)是()A.(2017,0) B.(2017,)C.(2018,) D.(2018,0)7.以下各圖中,能確定的是()A. B. C. D.8.在平面直角坐標(biāo)系中,若點(diǎn)A(a,-b)在第一象限內(nèi),則點(diǎn)B(a,b)所在的象限是()A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限9.如圖,小橋用黑白棋子組成的一組圖案,第1個(gè)圖案由1個(gè)黑子組成,第2個(gè)圖案由1個(gè)黑子和6個(gè)白子組成,第3個(gè)圖案由13個(gè)黑子和6個(gè)白子組成,按照這樣的規(guī)律排列下去,則第8個(gè)圖案中共有(

)和黑子.A.37 B.42 C.73 D.12110.下列運(yùn)算正確的是()A.(﹣2a)3=﹣6a3 B.﹣3a2?4a3=﹣12a5C.﹣3a(2﹣a)=6a﹣3a2 D.2a3﹣a2=2a11.若一元二次方程x2﹣2x+m=0有兩個(gè)不相同的實(shí)數(shù)根,則實(shí)數(shù)m的取值范圍是()A.m≥1 B.m≤1 C.m>1 D.m<112.如圖,已知第一象限內(nèi)的點(diǎn)A在反比例函數(shù)y=2x上,第二象限的點(diǎn)B在反比例函數(shù)y=kxA.﹣22 B.4 C.﹣4 D.22二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.定義:直線l1與l2相交于點(diǎn)O,對(duì)于平面內(nèi)任意一點(diǎn)M,點(diǎn)M到直線l1,l2的距離分別為p、q,則稱有序?qū)崝?shù)對(duì)(p,q)是點(diǎn)M的“距離坐標(biāo)”.根據(jù)上述定義,“距離坐標(biāo)”是(1,2)的點(diǎn)的個(gè)數(shù)共有______個(gè).14.意大利著名數(shù)學(xué)家斐波那契在研究兔子繁殖問題時(shí),發(fā)現(xiàn)有這樣一組數(shù):1,1,2,3,5,8,13,…,請(qǐng)根據(jù)這組數(shù)的規(guī)律寫出第10個(gè)數(shù)是______.15.如圖,在矩形ABCD中,AD=2,CD=1,連接AC,以對(duì)角線AC為邊,按逆時(shí)針方向作矩形ABCD的相似矩形AB1C1C,再連接AC1,以對(duì)角線AC1為邊作矩形AB1C1C的相似矩形AB2C2C1,…,按此規(guī)律繼續(xù)下去,則矩形ABnCnCn-1的面積為________________.16.出售某種手工藝品,若每個(gè)獲利x元,一天可售出個(gè),則當(dāng)x=_________元,一天出售該種手工藝品的總利潤(rùn)y最大.17.我們知道方程組的解是,現(xiàn)給出另一個(gè)方程組,它的解是____.18.在△ABC中,若∠A,∠B滿足|cosA-|+(sinB-)2=0,則∠C=_________.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)在一次數(shù)學(xué)活動(dòng)課上,老師讓同學(xué)們到操場(chǎng)上測(cè)量旗桿的高度,然后回來交流各自的測(cè)量方法.小芳的測(cè)量方法是:拿一根高3.5米的竹竿直立在離旗桿27米的C處(如圖),然后沿BC方向走到D處,這時(shí)目測(cè)旗桿頂部A與竹竿頂部E恰好在同一直線上,又測(cè)得C、D兩點(diǎn)的距離為3米,小芳的目高為1.5米,這樣便可知道旗桿的高.你認(rèn)為這種測(cè)量方法是否可行?請(qǐng)說明理由.20.(6分)在學(xué)習(xí)了矩形這節(jié)內(nèi)容之后,明明同學(xué)發(fā)現(xiàn)生活中的很多矩形都很特殊,如我們的課本封面、A4的打印紙等,這些矩形的長(zhǎng)與寬之比都為:1,我們將具有這類特征的矩形稱為“完美矩形”如圖(1),在“完美矩形”ABCD中,點(diǎn)P為AB邊上的定點(diǎn),且AP=AD.求證:PD=AB.如圖(2),若在“完美矩形“ABCD的邊BC上有一動(dòng)點(diǎn)E,當(dāng)?shù)闹凳嵌嗌贂r(shí),△PDE的周長(zhǎng)最???如圖(3),點(diǎn)Q是邊AB上的定點(diǎn),且BQ=BC.已知AD=1,在(2)的條件下連接DE并延長(zhǎng)交AB的延長(zhǎng)線于點(diǎn)F,連接CF,G為CF的中點(diǎn),M、N分別為線段QF和CD上的動(dòng)點(diǎn),且始終保持QM=CN,MN與DF相交于點(diǎn)H,請(qǐng)問GH的長(zhǎng)度是定值嗎?若是,請(qǐng)求出它的值,若不是,請(qǐng)說明理由.21.(6分)先化簡(jiǎn),再求值:,其中x=-1.22.(8分)為給鄧小平誕辰周年獻(xiàn)禮,廣安市政府對(duì)城市建設(shè)進(jìn)行了整改,如圖所示,已知斜坡長(zhǎng)60米,坡角(即)為,,現(xiàn)計(jì)劃在斜坡中點(diǎn)處挖去部分斜坡,修建一個(gè)平行于水平線的休閑平臺(tái)和一條新的斜坡(下面兩個(gè)小題結(jié)果都保留根號(hào)).若修建的斜坡BE的坡比為:1,求休閑平臺(tái)的長(zhǎng)是多少米?一座建筑物距離點(diǎn)米遠(yuǎn)(即米),小亮在點(diǎn)測(cè)得建筑物頂部的仰角(即)為.點(diǎn)、、、,在同一個(gè)平面內(nèi),點(diǎn)、、在同一條直線上,且,問建筑物高為多少米?23.(8分)某商場(chǎng)計(jì)劃從廠家購(gòu)進(jìn)甲、乙、丙三種型號(hào)的電冰箱80臺(tái),其中甲種電冰箱的臺(tái)數(shù)是乙種電冰箱臺(tái)數(shù)的2倍.具體情況如下表:甲種乙種丙種進(jìn)價(jià)(元/臺(tái))120016002000售價(jià)(元/臺(tái))142018602280經(jīng)預(yù)算,商場(chǎng)最多支出132000元用于購(gòu)買這批電冰箱.(1)商場(chǎng)至少購(gòu)進(jìn)乙種電冰箱多少臺(tái)?(2)商場(chǎng)要求甲種電冰箱的臺(tái)數(shù)不超過丙種電冰箱的臺(tái)數(shù).為獲得最大利潤(rùn),應(yīng)分別購(gòu)進(jìn)甲、乙、丙電冰箱多少臺(tái)?獲得的最大利潤(rùn)是多少?24.(10分)下表中給出了變量x,與y=ax2,y=ax2+bx+c之間的部分對(duì)應(yīng)值,(表格中的符號(hào)“…”表示該項(xiàng)數(shù)據(jù)已丟失)x﹣101ax2……1ax2+bx+c72…(1)求拋物線y=ax2+bx+c的表達(dá)式(2)拋物線y=ax2+bx+c的頂點(diǎn)為D,與y軸的交點(diǎn)為A,點(diǎn)M是拋物線對(duì)稱軸上一點(diǎn),直線AM交對(duì)稱軸右側(cè)的拋物線于點(diǎn)B,當(dāng)△ADM與△BDM的面積比為2:3時(shí),求B點(diǎn)坐標(biāo);(3)在(2)的條件下,設(shè)線段BD與x軸交于點(diǎn)C,試寫出∠BAD和∠DCO的數(shù)量關(guān)系,并說明理由.25.(10分)網(wǎng)癮低齡化問題已經(jīng)引起社會(huì)各界的高度關(guān)注,有關(guān)部門在全國(guó)范圍內(nèi)對(duì)12﹣35歲的網(wǎng)癮人群進(jìn)行了簡(jiǎn)單的隨機(jī)抽樣調(diào)查,繪制出以下兩幅統(tǒng)計(jì)圖.請(qǐng)根據(jù)圖中的信息,回答下列問題:(1)這次抽樣調(diào)查中共調(diào)查了人;(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;(3)扇形統(tǒng)計(jì)圖中18﹣23歲部分的圓心角的度數(shù)是;(4)據(jù)報(bào)道,目前我國(guó)12﹣35歲網(wǎng)癮人數(shù)約為2000萬,請(qǐng)估計(jì)其中12﹣23歲的人數(shù)26.(12分)已知,拋物線y=﹣x2+bx+c經(jīng)過點(diǎn)A(﹣1,0)和C(0,3).(1)求拋物線的解析式;(2)設(shè)點(diǎn)M在拋物線的對(duì)稱軸上,當(dāng)△MAC是以AC為直角邊的直角三角形時(shí),求點(diǎn)M的坐標(biāo).27.(12分)在⊙O中,弦AB與弦CD相交于點(diǎn)G,OA⊥CD于點(diǎn)E,過點(diǎn)B作⊙O的切線BF交CD的延長(zhǎng)線于點(diǎn)F.(I)如圖①,若∠F=50°,求∠BGF的大小;(II)如圖②,連接BD,AC,若∠F=36°,AC∥BF,求∠BDG的大?。?/p>

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、C【解析】

過點(diǎn)E作EF∥AB,如圖,易得CD∥EF,然后根據(jù)平行線的性質(zhì)可得∠BAE+∠FEA=180°,∠C=∠FEC=γ,進(jìn)一步即得結(jié)論.【詳解】解:過點(diǎn)E作EF∥AB,如圖,∵AB∥CD,AB∥EF,∴CD∥EF,∴∠BAE+∠FEA=180°,∠C=∠FEC=γ,∴∠FEA=β﹣γ,∴α+(β﹣γ)=180°,即α+β﹣γ=180°.故選:C.【點(diǎn)睛】本題考查了平行公理的推論和平行線的性質(zhì),屬于??碱}型,作EF∥AB、熟練掌握平行線的性質(zhì)是解題的關(guān)鍵.2、B【解析】

根據(jù)勾股定理和三角函數(shù)即可解答.【詳解】解:已知在Rt△ABC中∠C=90°,∠A、∠B、∠C的對(duì)邊分別為a、b、c,c=3a,設(shè)a=x,則c=3x,b==2x.即tanA==.故選B.【點(diǎn)睛】本題考查勾股定理和三角函數(shù),熟悉掌握是解題關(guān)鍵.3、B【解析】

拋物線平移不改變a的值,由拋物線的頂點(diǎn)坐標(biāo)即可得出結(jié)果.【詳解】解:原拋物線的頂點(diǎn)為(0,0),向左平移1個(gè)單位,再向下平移1個(gè)單位,那么新拋物線的頂點(diǎn)為(-1,-1),

可設(shè)新拋物線的解析式為:y=(x-h)1+k,

代入得:y=(x+1)1-1.

∴所得圖象的解析式為:y=(x+1)1-1;

故選:B.【點(diǎn)睛】本題考查二次函數(shù)圖象的平移規(guī)律;解決本題的關(guān)鍵是得到新拋物線的頂點(diǎn)坐標(biāo).4、A【解析】

如圖,過點(diǎn)C作CD∥a,再由平行線的性質(zhì)即可得出結(jié)論.【詳解】如圖,過點(diǎn)C作CD∥a,則∠1=∠ACD,∵a∥b,∴CD∥b,∴∠2=∠DCB,∵∠ACD+∠DCB=90°,∴∠1+∠2=90°,又∵∠1=65°,∴∠2=25°,故選A.【點(diǎn)睛】本題考查了平行線的性質(zhì)與判定,根據(jù)題意作出輔助線,構(gòu)造出平行線是解答此題的關(guān)鍵.5、B【解析】

根據(jù)余角的性質(zhì),可得∠DCA與∠CBE的關(guān)系,根據(jù)AAS可得△ACD與△CBE的關(guān)系,根據(jù)全等三角形的性質(zhì),可得AD與CE的關(guān)系,根據(jù)線段的和差,可得答案.【詳解】∴∠ADC=∠BEC=90°.∵∠BCE+∠CBE=90°,∠BCE+∠CAD=90°,∠DCA=∠CBE,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS),∴CE=AD=3,CD=BE=1,DE=CE?CD=3?1=2,故答案選:B.【點(diǎn)睛】本題考查了全等三角形的判定與性質(zhì),解題的關(guān)鍵是熟練的掌握全等三角形的判定與性質(zhì).6、C【解析】

本題是規(guī)律型:點(diǎn)的坐標(biāo);坐標(biāo)與圖形變化-旋轉(zhuǎn),正六邊形ABCDEF一共有6條邊,即6次一循環(huán);因?yàn)?017÷6=336余1,點(diǎn)F滾動(dòng)1次時(shí)的橫坐標(biāo)為2,縱坐標(biāo)為,點(diǎn)F滾動(dòng)7次時(shí)的橫坐標(biāo)為8,縱坐標(biāo)為,所以點(diǎn)F滾動(dòng)2107次時(shí)的縱坐標(biāo)與相同,橫坐標(biāo)的次數(shù)加1,由此即可解決問題.【詳解】.解:∵正六邊形ABCDEF一共有6條邊,即6次一循環(huán);∴2017÷6=336余1,∴點(diǎn)F滾動(dòng)1次時(shí)的橫坐標(biāo)為2,縱坐標(biāo)為,點(diǎn)F滾動(dòng)7次時(shí)的橫坐標(biāo)為8,縱坐標(biāo)為,∴點(diǎn)F滾動(dòng)2107次時(shí)的縱坐標(biāo)與相同,橫坐標(biāo)的次數(shù)加1,∴點(diǎn)F滾動(dòng)2107次時(shí)的橫坐標(biāo)為2017+1=2018,縱坐標(biāo)為,∴點(diǎn)F滾動(dòng)2107次時(shí)的坐標(biāo)為(2018,),故選C.【點(diǎn)睛】本題考查坐標(biāo)與圖形的變化,規(guī)律型:點(diǎn)的坐標(biāo),解題關(guān)鍵是學(xué)會(huì)從特殊到一般的探究方法,是中考??碱}型.7、C【解析】

逐一對(duì)選項(xiàng)進(jìn)行分析即可得出答案.【詳解】A中,利用三角形外角的性質(zhì)可知,故該選項(xiàng)錯(cuò)誤;B中,不能確定的大小關(guān)系,故該選項(xiàng)錯(cuò)誤;C中,因?yàn)橥∷鶎?duì)的圓周角相等,所以,故該選項(xiàng)正確;D中,兩直線不平行,所以,故該選項(xiàng)錯(cuò)誤.故選:C.【點(diǎn)睛】本題主要考查平行線的性質(zhì)及圓周角定理的推論,掌握?qǐng)A周角定理的推論是解題的關(guān)鍵.8、D【解析】

先根據(jù)第一象限內(nèi)的點(diǎn)的坐標(biāo)特征判斷出a、b的符號(hào),進(jìn)而判斷點(diǎn)B所在的象限即可.【詳解】∵點(diǎn)A(a,-b)在第一象限內(nèi),∴a>0,-b>0,∴b<0,∴點(diǎn)B((a,b)在第四象限,故選D.【點(diǎn)睛】本題考查了點(diǎn)的坐標(biāo),解決本題的關(guān)鍵是牢記平面直角坐標(biāo)系中各個(gè)象限內(nèi)點(diǎn)的符號(hào)特征:第一象限正正,第二象限負(fù)正,第三象限負(fù)負(fù),第四象限正負(fù).9、C【解析】解:第1、2圖案中黑子有1個(gè),第3、4圖案中黑子有1+2×6=13個(gè),第5、6圖案中黑子有1+2×6+4×6=37個(gè),第7、8圖案中黑子有1+2×6+4×6+6×6=73個(gè).故選C.點(diǎn)睛:本題考查了規(guī)律型:圖形的變化類:通過從一些特殊的圖形變化中發(fā)現(xiàn)不變的因素或按規(guī)律變化的因素,然后推廣到一般情況.10、B【解析】

先根據(jù)同底數(shù)冪的乘法法則進(jìn)行運(yùn)算即可?!驹斀狻緼.;故本選項(xiàng)錯(cuò)誤;B.﹣3a2?4a3=﹣12a5;故本選項(xiàng)正確;C.;故本選項(xiàng)錯(cuò)誤;D.不是同類項(xiàng)不能合并;故本選項(xiàng)錯(cuò)誤;故選B.【點(diǎn)睛】先根據(jù)同底數(shù)冪的乘法法則,冪的乘方,積的乘方,合并同類項(xiàng)分別求出每個(gè)式子的值,再判斷即可.11、D【解析】分析:根據(jù)方程的系數(shù)結(jié)合根的判別式△>0,即可得出關(guān)于m的一元一次不等式,解之即可得出實(shí)數(shù)m的取值范圍.詳解:∵方程有兩個(gè)不相同的實(shí)數(shù)根,∴解得:m<1.故選D.點(diǎn)睛:本題考查了根的判別式,牢記“當(dāng)△>0時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根”是解題的關(guān)鍵.12、C【解析】試題分析:作AC⊥x軸于點(diǎn)C,作BD⊥x軸于點(diǎn)D.則∠BDO=∠ACO=90°,則∠BOD+∠OBD=90°,∵OA⊥OB,∴∠BOD+∠AOC=90°,∴∠BOD=∠AOC,∴△OBD∽△AOC,∴SΔOBDSΔAOC又∵S△AOC=12×2=1,∴S△OBD故選C.考點(diǎn):1.相似三角形的判定與性質(zhì);2.反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、4【解析】

根據(jù)“距離坐標(biāo)”和平面直角坐標(biāo)系的定義分別寫出各點(diǎn)即可.【詳解】距離坐標(biāo)是(1,2)的點(diǎn)有(1,2),(-1,2),(-1,-2),(1,-2)共四個(gè),所以答案填寫4.【點(diǎn)睛】本題考查了點(diǎn)的坐標(biāo),理解題意中距離坐標(biāo)是解題的關(guān)鍵.14、1【解析】解:3=2+1;5=3+2;8=5+3;13=8+5;…可以發(fā)現(xiàn):從第三個(gè)數(shù)起,每一個(gè)數(shù)都等于它前面兩個(gè)數(shù)的和.則第8個(gè)數(shù)為13+8=21;第9個(gè)數(shù)為21+13=34;第10個(gè)數(shù)為34+21=1.故答案為1.點(diǎn)睛:此題考查了數(shù)字的有規(guī)律變化,解答此類題目的關(guān)鍵是要求學(xué)生通對(duì)題目中給出的圖表、數(shù)據(jù)等認(rèn)真進(jìn)行分析、歸納并發(fā)現(xiàn)其中的規(guī)律,并應(yīng)用規(guī)律解決問題.此類題目難度一般偏大.15、或【解析】試題分析:AC===,因?yàn)榫匦味枷嗨?,且每相鄰兩個(gè)矩形的相似比=,∴=2×1=2,=,===,...,==...===.故答案為.考點(diǎn):1.相似多邊形的性質(zhì);2.勾股定理;3.規(guī)律型;4.矩形的性質(zhì);5.綜合題.16、1【解析】先根據(jù)題意得出總利潤(rùn)y與x的函數(shù)關(guān)系式,再根據(jù)二次函數(shù)的最值問題進(jìn)行解答.解:∵出售某種手工藝品,若每個(gè)獲利x元,一天可售出(8-x)個(gè),

∴y=(8-x)x,即y=-x2+8x,

∴當(dāng)x=-=1時(shí),y取得最大值.

故答案為:1.17、【解析】

觀察兩個(gè)方程組的形式與聯(lián)系,可得第二個(gè)方程組中,解之即可.【詳解】解:由題意得,解得.故答案為:.【點(diǎn)睛】本題考查了二元一次方程組的解,用整體代入法解決這種問題比較方便.18、75°【解析】【分析】根據(jù)絕對(duì)值及偶次方的非負(fù)性,可得出cosA及sinB的值,從而得出∠A及∠B的度數(shù),利用三角形的內(nèi)角和定理可得出∠C的度數(shù).【詳解】∵|cosA-|+(sinB-)2=0,∴cosA=,sinB=,∴∠A=60°,∠B=45°,∴∠C=180°-∠A-∠B=75°,故答案為:75°.【點(diǎn)睛】本題考查了特殊角的三角函數(shù)值及非負(fù)數(shù)的性質(zhì),解答本題的關(guān)鍵是得出cosA及sinB的值,另外要求我們熟練掌握一些特殊角的三角函數(shù)值.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、這種測(cè)量方法可行,旗桿的高為21.1米.【解析】分析:根據(jù)已知得出過F作FG⊥AB于G,交CE于H,利用相似三角形的判定得出△AGF∽△EHF,再利用相似三角形的性質(zhì)得出即可.詳解:這種測(cè)量方法可行.理由如下:設(shè)旗桿高AB=x.過F作FG⊥AB于G,交CE于H(如圖).所以△AGF∽△EHF.因?yàn)镕D=1.1,GF=27+3=30,HF=3,所以EH=3.1﹣1.1=2,AG=x﹣1.1.由△AGF∽△EHF,得,即,所以x﹣1.1=20,解得x=21.1(米)答:旗桿的高為21.1米.點(diǎn)睛:此題主要考查了相似三角形的判定與性質(zhì),根據(jù)已知得出△AGF∽△EHF是解題關(guān)鍵.20、(1)證明見解析(2)(3)【解析】

(1)根據(jù)題中“完美矩形”的定義設(shè)出AD與AB,根據(jù)AP=AD,利用勾股定理表示出PD,即可得證;(2)如圖,作點(diǎn)P關(guān)于BC的對(duì)稱點(diǎn)P′,連接DP′交BC于點(diǎn)E,此時(shí)△PDE的周長(zhǎng)最小,設(shè)AD=PA=BC=a,表示出AB與CD,由AB-AP表示出BP,由對(duì)稱的性質(zhì)得到BP=BP′,由平行得比例,求出所求比值即可;(3)GH=,理由為:由(2)可知BF=BP=AB-AP,由等式的性質(zhì)得到MF=DN,利用AAS得到△MFH≌△NDH,利用全等三角形對(duì)應(yīng)邊相等得到FH=DH,再由G為CF中點(diǎn),得到HG為中位線,利用中位線性質(zhì)求出GH的長(zhǎng)即可.【詳解】(1)在圖1中,設(shè)AD=BC=a,則有AB=CD=a,∵四邊形ABCD是矩形,∴∠A=90°,∵PA=AD=BC=a,∴PD==a,∵AB=a,∴PD=AB;(2)如圖,作點(diǎn)P關(guān)于BC的對(duì)稱點(diǎn)P′,連接DP′交BC于點(diǎn)E,此時(shí)△PDE的周長(zhǎng)最小,設(shè)AD=PA=BC=a,則有AB=CD=a,∵BP=AB-PA,∴BP′=BP=a-a,∵BP′∥CD,∴;(3)GH=,理由為:由(2)可知BF=BP=AB-AP,∵AP=AD,∴BF=AB-AD,∵BQ=BC,∴AQ=AB-BQ=AB-BC,∵BC=AD,∴AQ=AB-AD,∴BF=AQ,∴QF=BQ+BF=BQ+AQ=AB,∵AB=CD,∴QF=CD,∵QM=CN,∴QF-QM=CD-CN,即MF=DN,∵M(jìn)F∥DN,∴∠NFH=∠NDH,在△MFH和△NDH中,,∴△MFH≌△NDH(AAS),∴FH=DH,∵G為CF的中點(diǎn),∴GH是△CFD的中位線,∴GH=CD=×2=.【點(diǎn)睛】此題屬于相似綜合題,涉及的知識(shí)有:相似三角形的判定與性質(zhì),全等三角形的判定與性質(zhì),勾股定理,三角形中位線性質(zhì),平行線的判定與性質(zhì),熟練掌握相似三角形的性質(zhì)是解本題的關(guān)鍵.21、解:原式=,.【解析】

試題分析:先將括號(hào)里面的通分后,將除法轉(zhuǎn)換成乘法,約分化簡(jiǎn).然后代x的值,進(jìn)行二次根式化簡(jiǎn).解:原式=.當(dāng)x=-1時(shí),原式.22、(1)m(2)米【解析】分析:(1)由三角函數(shù)的定義,即可求得AM與AF的長(zhǎng),又由坡度的定義,即可求得NF的長(zhǎng),繼而求得平臺(tái)MN的長(zhǎng);(2)在RT△BMK中,求得BK=MK=50米,從而求得EM=84米;在RT△HEM中,求得,繼而求得米.詳解:(1)∵M(jìn)F∥BC,∴∠AMF=∠ABC=45°,∵斜坡AB長(zhǎng)米,M是AB的中點(diǎn),∴AM=(米),∴AF=MF=AM?cos∠AMF=(米),在中,∵斜坡AN的坡比為∶1,∴,∴,∴MN=MF-NF=50-=.(2)在RT△BMK中,BM=,∴BK=MK=50(米),

EM=BG+BK=34+50=84(米)在RT△HEM中,∠HME=30°,∴,∴,∴(米)答:休閑平臺(tái)DE的長(zhǎng)是米;建筑物GH高為米.點(diǎn)睛:本題考查了坡度坡角的問題以及俯角仰角的問題.解題的關(guān)鍵是根據(jù)題意構(gòu)造直角三角形,將實(shí)際問題轉(zhuǎn)化為解直角三角形的問題;掌握數(shù)形結(jié)合思想與方程思想在題中的運(yùn)用.23、(1)商場(chǎng)至少購(gòu)進(jìn)乙種電冰箱14臺(tái);(2)商場(chǎng)購(gòu)進(jìn)甲種電冰箱28臺(tái),購(gòu)進(jìn)乙種電冰箱14(臺(tái)),購(gòu)進(jìn)丙種電冰箱38臺(tái).【解析】

(1)設(shè)商場(chǎng)購(gòu)進(jìn)乙種電冰箱x臺(tái),則購(gòu)進(jìn)甲種電冰箱2x臺(tái),丙種電冰箱(80-3x)臺(tái),根據(jù)“商場(chǎng)最多支出132000元用于購(gòu)買這批電冰箱”列出不等式,解之即可得;(2)根據(jù)“總利潤(rùn)=甲種冰箱利潤(rùn)+乙種冰箱利潤(rùn)+丙種冰箱利潤(rùn)”列出W關(guān)于x的函數(shù)解析式,結(jié)合x的取值范圍,利用一次函數(shù)的性質(zhì)求解可得.【詳解】(1)設(shè)商場(chǎng)購(gòu)進(jìn)乙種電冰箱x臺(tái),則購(gòu)進(jìn)甲種電冰箱2x臺(tái),丙種電冰箱(80﹣3x)臺(tái).根據(jù)題意得:1200×2x+1600x+2000(80﹣3x)≤132000,解得:x≥14,∴商場(chǎng)至少購(gòu)進(jìn)乙種電冰箱14臺(tái);(2)由題意得:2x≤80﹣3x且x≥14,∴14≤x≤16,∵W=220×2x+260x+280(80﹣3x)=﹣140x+22400,∴W隨x的增大而減小,∴當(dāng)x=14時(shí),W取最大值,且W最大=﹣140×14+22400=20440,此時(shí),商場(chǎng)購(gòu)進(jìn)甲種電冰箱28臺(tái),購(gòu)進(jìn)乙種電冰箱14(臺(tái)),購(gòu)進(jìn)丙種電冰箱38臺(tái).【點(diǎn)睛】本題主要考查一次函數(shù)的應(yīng)用與一元一次不等式的應(yīng)用,解題的關(guān)鍵是理解題意找到題目蘊(yùn)含的不等關(guān)系和相等關(guān)系,并據(jù)此列出不等式與函數(shù)解析式.24、(1)y=x2﹣4x+2;(2)點(diǎn)B的坐標(biāo)為(5,7);(1)∠BAD和∠DCO互補(bǔ),理由詳見解析.【解析】

(1)由(1,1)在拋物線y=ax2上可求出a值,再由(﹣1,7)、(0,2)在拋物線y=x2+bx+c上可求出b、c的值,此題得解;(2)由△ADM和△BDM同底可得出兩三角形的面積比等于高的比,結(jié)合點(diǎn)A的坐標(biāo)即可求出點(diǎn)B的橫坐標(biāo),再利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征即可求出點(diǎn)B的坐標(biāo);(1)利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出A、D的坐標(biāo),過點(diǎn)A作AN∥x軸,交BD于點(diǎn)N,則∠AND=∠DCO,根據(jù)點(diǎn)B、D的坐標(biāo)利用待定系數(shù)法可求出直線BD的解析式,利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出點(diǎn)N的坐標(biāo),利用兩點(diǎn)間的距離公式可求出BA、BD、BN的長(zhǎng)度,由三者間的關(guān)系結(jié)合∠ABD=∠NBA,可證出△ABD∽△NBA,根據(jù)相似三角形的性質(zhì)可得出∠ANB=∠DAB,再由∠ANB+∠AND=120°可得出∠DAB+∠DCO=120°,即∠BAD和∠DCO互補(bǔ).【詳解】(1)當(dāng)x=1時(shí),y=ax2=1,解得:a=1;將(﹣1,7)、(0,2)代入y=x2+bx+c,得:,解得:,∴拋物線的表達(dá)式為y=x2﹣4x+2;(2)∵△ADM和△BDM同底,且△ADM與△BDM的面積比為2:1,∴點(diǎn)A到拋物線的距離與點(diǎn)B到拋物線的距離比為2:1.∵拋物線y=x2﹣4x+2的對(duì)稱軸為直線x=﹣=2,點(diǎn)A的橫坐標(biāo)為0,∴點(diǎn)B到拋物線的距離為1,∴點(diǎn)B的橫坐標(biāo)為1+2=5,∴點(diǎn)B的坐標(biāo)為(5,7).(1)∠BAD和∠DCO互補(bǔ),理由如下:當(dāng)x=0時(shí),y=x2﹣4x+2=2,∴點(diǎn)A的坐標(biāo)為(0,2),∵y=x2﹣4x+2=(x﹣2)2﹣2,∴點(diǎn)D的坐標(biāo)為(2,﹣2).過點(diǎn)A作AN∥x軸,交BD于點(diǎn)N,則∠AND=∠DCO,如圖所示.設(shè)直線BD的表達(dá)式為y=mx+n(m≠0),將B(5,7)、D(2,﹣2)代入y=mx+n,,解得:,∴直線BD的表達(dá)式為y=1x﹣2.當(dāng)y=2時(shí),有1x﹣2=2,解得:x=,∴點(diǎn)N的坐標(biāo)為(,2).∵A(0,2),B(5,7),D(2,﹣2),∴AB=5,BD=1,BN=,∴==.又∵∠ABD=∠NBA,∴△ABD∽△NBA,∴∠ANB=∠DAB.∵∠ANB+∠AND=120°,∴∠DAB+∠DCO=120°,∴∠BAD和∠DCO互補(bǔ).【點(diǎn)睛】本題是二次函數(shù)綜合題,考查了待定系數(shù)法求二次函數(shù)和一次函數(shù)解析式、等底三角形面積的關(guān)系、二次函數(shù)的圖像與性質(zhì)、相似三角形的判定與性質(zhì).熟練掌握待定系數(shù)法是解(1)的關(guān)鍵;熟練掌握等底三角形面積的關(guān)系式解(2)的關(guān)鍵;證明△ABD∽△NBA是解(1)的關(guān)鍵.25、(1)1500;(2)見解析;(3)108°;(3)12~23歲的人數(shù)為400萬【解析】試題分析:(1)根據(jù)30-35歲的人數(shù)和所占的百分比求調(diào)查的人數(shù);(2)從調(diào)查的總?cè)藬?shù)中減去已知的三組的人數(shù),即可得到12-17歲的人數(shù),據(jù)此補(bǔ)全條形統(tǒng)計(jì)圖;(3)先計(jì)算18-23歲的人數(shù)占調(diào)查總?cè)藬?shù)的百分比,再計(jì)算這一組所對(duì)應(yīng)的圓心角的度數(shù);(4)先計(jì)算調(diào)查中12﹣23歲的人數(shù)所占的百分比,再求網(wǎng)癮人數(shù)約為2000萬中的12﹣23歲的人數(shù).試題解析:解:(1)結(jié)合條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖可知,30-35歲的人數(shù)為330人,所占的百分比為22%,所以調(diào)查的總?cè)藬?shù)為330÷22%=1500人.故答案為1500;(2)1500-450-420-330=300人.補(bǔ)全的條形統(tǒng)計(jì)圖如圖:(3)18-23歲這一組所對(duì)應(yīng)的圓心角的度數(shù)為360×=108°.故答案為108°;(4)(300+450)÷1500=50%,.考點(diǎn):條形統(tǒng)計(jì)圖;扇形統(tǒng)計(jì)圖.26、(1)y=﹣x2+2x+1;(2)當(dāng)△MAC是直角三角形時(shí),點(diǎn)M的坐標(biāo)為(1,)或(1,﹣).【解析】

(1)由點(diǎn)A、C的坐標(biāo),利用待定系數(shù)法即可求出拋物線的解析式;

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論