2022屆甘肅省蘭州市第九中學中考沖刺卷數(shù)學試題含解析_第1頁
2022屆甘肅省蘭州市第九中學中考沖刺卷數(shù)學試題含解析_第2頁
2022屆甘肅省蘭州市第九中學中考沖刺卷數(shù)學試題含解析_第3頁
2022屆甘肅省蘭州市第九中學中考沖刺卷數(shù)學試題含解析_第4頁
2022屆甘肅省蘭州市第九中學中考沖刺卷數(shù)學試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022屆甘肅省蘭州市第九中學中考沖刺卷數(shù)學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.如圖,已知點P是雙曲線y=上的一個動點,連結OP,若將線段OP繞點O逆時針旋轉90°得到線段OQ,則經過點Q的雙曲線的表達式為()A.y= B.y=﹣ C.y= D.y=﹣2.如圖,正方形ABCD的頂點C在正方形AEFG的邊AE上,AB=2,AE=,則點G到BE的距離是()A. B. C. D.3.如圖,在△ABC中,AB=AC,AD和CE是高,∠ACE=45°,點F是AC的中點,AD與FE,CE分別交于點G、H,∠BCE=∠CAD,有下列結論:①圖中存在兩個等腰直角三角形;②△AHE≌△CBE;③BC?AD=AE2;④S△ABC=4S△ADF.其中正確的個數(shù)有()A.1 B.2 C.3 D.44.根據(jù)物理學家波義耳1662年的研究結果:在溫度不變的情況下,氣球內氣體的壓強p(pa)與它的體積v(m3)的乘積是一個常數(shù)k,即pv=k(k為常數(shù),k>0),下列圖象能正確反映p與v之間函數(shù)關系的是()A. B.C. D.5.如圖,A、B、C、D四個點均在⊙O上,∠AOD=70°,AO∥DC,則∠B的度數(shù)為()A.40° B.45° C.50° D.55°6.估計﹣÷2的運算結果在哪兩個整數(shù)之間()A.0和1 B.1和2 C.2和3 D.3和47.函數(shù)y=的自變量x的取值范圍是()A.x≠2 B.x<2 C.x≥2 D.x>28.正五邊形繞著它的中心旋轉后與它本身重合,最小的旋轉角度數(shù)是()A.36° B.54° C.72° D.108°9.下列事件中為必然事件的是()A.打開電視機,正在播放茂名新聞 B.早晨的太陽從東方升起C.隨機擲一枚硬幣,落地后正面朝上 D.下雨后,天空出現(xiàn)彩虹10.小紅上學要經過兩個十字路口,每個路口遇到紅、綠燈的機會都相同,小紅希望上學時經過每個路口都是綠燈,但實際這樣的機會是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.用換元法解方程,設y=,那么原方程化為關于y的整式方程是_____.12.如圖,將一對直角三角形卡片的斜邊AC重合擺放,直角頂點B,D在AC的兩側,連接BD,交AC于點O,取AC,BD的中點E,F(xiàn),連接EF.若AB=12,BC=5,且AD=CD,則EF的長為_____.13.寫出一個平面直角坐標系中第三象限內點的坐標:(__________)14.如圖的三角形紙片中,AB=8cm,BC=6cm,AC=5cm.沿過點B的直線折疊三角形,使點C落在AB邊的點E處,折痕為BD.則△AED的周長為____cm.15.若正六邊形的內切圓半徑為2,則其外接圓半徑為__________.16.如圖所示,四邊形ABCD中,,對角線AC、BD交于點E,且,,若,,則CE的長為_____.三、解答題(共8題,共72分)17.(8分)某公司今年1月份的生產成本是400萬元,由于改進技術,生產成本逐月下降,3月份的生產成本是361萬元.假設該公司2、3、4月每個月生產成本的下降率都相同.求每個月生產成本的下降率;請你預測4月份該公司的生產成本.18.(8分)某班為確定參加學校投籃比賽的任選,在A、B兩位投籃高手間進行了6次投籃比賽,每人每次投10個球,將他們每次投中的個數(shù)繪制成如圖所示的折線統(tǒng)計圖.(1)根據(jù)圖中所給信息填寫下表:投中個數(shù)統(tǒng)計平均數(shù)中位數(shù)眾數(shù)A8B77(2)如果這個班只能在A、B之間選派一名學生參賽,從投籃穩(wěn)定性考慮應該選派誰?請你利用學過的統(tǒng)計量對問題進行分析說明.19.(8分)已知:在⊙O中,弦AB=AC,AD是⊙O的直徑.求證:BD=CD.20.(8分)解方程組:.21.(8分)解方程22.(10分)在“植樹節(jié)”期間,小王、小李兩人想通過摸球的方式來決定誰去參加學校植樹活動,規(guī)則如下:在兩個盒子內分別裝入標有數(shù)字1,2,3,4的四個和標有數(shù)字1,2,3的三個完全相同的小球,分別從兩個盒子中各摸出一個球,如果所摸出的球上的數(shù)字之和小于5,那么小王去,否則就是小李去.用樹狀圖或列表法求出小王去的概率;小李說:“這種規(guī)則不公平”,你認同他的說法嗎?請說明理由.23.(12分)某公司10名銷售員,去年完成的銷售額情況如表:銷售額(單位:萬元)34567810銷售員人數(shù)(單位:人)1321111(1)求銷售額的平均數(shù)、眾數(shù)、中位數(shù);(2)今年公司為了調動員工積極性,提高年銷售額,準備采取超額有獎的措施,請根據(jù)(1)的結果,通過比較,合理確定今年每個銷售員統(tǒng)一的銷售額標準是多少萬元?24.(1)如圖,四邊形為正方形,,那么與相等嗎?為什么?(2)如圖,在中,,,為邊的中點,于點,交于,求的值(3)如圖,中,,為邊的中點,于點,交于,若,,求.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

過P,Q分別作PM⊥x軸,QN⊥x軸,利用AAS得到兩三角形全等,由全等三角形對應邊相等及反比例函數(shù)k的幾何意義確定出所求即可.【詳解】過P,Q分別作PM⊥x軸,QN⊥x軸,∵∠POQ=90°,∴∠QON+∠POM=90°,∵∠QON+∠OQN=90°,∴∠POM=∠OQN,由旋轉可得OP=OQ,在△QON和△OPM中,,∴△QON≌△OPM(AAS),∴ON=PM,QN=OM,設P(a,b),則有Q(-b,a),由點P在y=上,得到ab=3,可得-ab=-3,則點Q在y=-上.故選D.【點睛】此題考查了待定系數(shù)法求反比例函數(shù)解析式,反比例函數(shù)圖象上點的坐標特征,以及坐標與圖形變化,熟練掌握待定系數(shù)法是解本題的關鍵.2、A【解析】

根據(jù)平行線的判定,可得AB與GE的關系,根據(jù)平行線間的距離相等,可得△BEG與△AEG的關系,根據(jù)根據(jù)勾股定理,可得AH與BE的關系,再根據(jù)勾股定理,可得BE的長,根據(jù)三角形的面積公式,可得G到BE的距離.【詳解】連接GB、GE,由已知可知∠BAE=45°.又∵GE為正方形AEFG的對角線,∴∠AEG=45°.∴AB∥GE.∵AE=4,AB與GE間的距離相等,∴GE=8,S△BEG=S△AEG=SAEFG=1.過點B作BH⊥AE于點H,∵AB=2,∴BH=AH=.∴HE=3.∴BE=2.設點G到BE的距離為h.∴S△BEG=?BE?h=×2×h=1.∴h=.即點G到BE的距離為.故選A.【點睛】本題主要考查了幾何變換綜合題.涉及正方形的性質,全等三角形的判定及性質,等積式及四點共圓周的知識,綜合性強.解題的關鍵是運用等積式及四點共圓的判定及性質求解.3、C【解析】

①圖中有3個等腰直角三角形,故結論錯誤;②根據(jù)ASA證明即可,結論正確;③利用面積法證明即可,結論正確;④利用三角形的中線的性質即可證明,結論正確.【詳解】∵CE⊥AB,∠ACE=45°,∴△ACE是等腰直角三角形,∵AF=CF,∴EF=AF=CF,∴△AEF,△EFC都是等腰直角三角形,∴圖中共有3個等腰直角三角形,故①錯誤,∵∠AHE+∠EAH=90°,∠DHC+∠BCE=90°,∠AHE=∠DHC,∴∠EAH=∠BCE,∵AE=EC,∠AEH=∠CEB=90°,∴△AHE≌△CBE,故②正確,∵S△ABC=BC?AD=AB?CE,AB=AC=AE,AE=CE,∴BC?AD=CE2,故③正確,∵AB=AC,AD⊥BC,∴BD=DC,∴S△ABC=2S△ADC,∵AF=FC,∴S△ADC=2S△ADF,∴S△ABC=4S△ADF.故選C.【點睛】本題考查相似三角形的判定和性質、等腰直角三角形的判定和性質、三角形的面積等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考選擇題中的壓軸題.4、C【解析】【分析】根據(jù)題意有:pv=k(k為常數(shù),k>0),故p與v之間的函數(shù)圖象為反比例函數(shù),且根據(jù)實際意義p、v都大于0,由此即可得.【詳解】∵pv=k(k為常數(shù),k>0)∴p=(p>0,v>0,k>0),故選C.【點睛】本題考查了反比例函數(shù)的應用,現(xiàn)實生活中存在大量成反比例函數(shù)的兩個變量,解答該類問題的關鍵是確定兩個變量之間的函數(shù)關系,然后利用實際意義確定其所在的象限.5、D【解析】試題分析:如圖,連接OC,∵AO∥DC,∴∠ODC=∠AOD=70°,∵OD=OC,∴∠ODC=∠OCD=70°,∴∠COD=40°,∴∠AOC=110°,∴∠B=∠AOC=55°.故選D.考點:1、平行線的性質;2、圓周角定理;3等腰三角形的性質6、D【解析】

先估算出的大致范圍,然后再計算出÷2的大小,從而得到問題的答案.【詳解】25<32<31,∴5<<1.原式=﹣2÷2=﹣2,∴3<﹣÷2<2.故選D.【點睛】本題主要考查的是二次根式的混合運算,估算無理數(shù)的大小,利用夾逼法估算出的大小是解題的關鍵.7、D【解析】

根據(jù)被開放式的非負性和分母不等于零列出不等式即可解題.【詳解】解:∵函數(shù)y=有意義,∴x-20,即x>2故選D【點睛】本題考查了根式有意義的條件,屬于簡單題,注意分母也不能等于零是解題關鍵.8、C【解析】正五邊形繞著它的中心旋轉后與它本身重合,最小的旋轉角度數(shù)是=72度,故選C.9、B【解析】分析:根據(jù)必然事件、不可能事件、隨機事件的概念可區(qū)別各類事件:A、打開電視機,正在播放茂名新聞,可能發(fā)生,也可能不發(fā)生,是隨機事件,故本選項錯誤;B、早晨的太陽從東方升起,是必然事件,故本選項正確;C、隨機擲一枚硬幣,落地后可能正面朝上,也可能背面朝上,故本選項錯誤;D、下雨后,天空出現(xiàn)彩虹,可能發(fā)生,也可能不發(fā)生,故本選項錯誤.故選B.10、C【解析】

列舉出所有情況,看每個路口都是綠燈的情況數(shù)占總情況數(shù)的多少即可得.【詳解】畫樹狀圖如下,共4種情況,有1種情況每個路口都是綠燈,所以概率為.故選C.二、填空題(本大題共6個小題,每小題3分,共18分)11、6y2-5y+2=0【解析】

根據(jù)y=,將方程變形即可.【詳解】根據(jù)題意得:3y+,得到6y2-5y+2=0故答案為6y2-5y+2=0【點睛】此題考查了換元法解分式方程,利用了整體的思想,將方程進行適當?shù)淖冃问墙獗绢}的關鍵.12、.【解析】

先求出BE的值,作DM⊥AB,DN⊥BC延長線,先證明△ADM≌△CDN(AAS),得出AM=CN,DM=DN,再根據(jù)正方形的性質得BM=BN,設AM=CN=x,BM=AB-AM=12-x=BN=5+x,求出x=,BN=,根據(jù)BD為正方形的對角線可得出BD=,BF=BD=,EF==.【詳解】∵∠ABC=∠ADC,∴A,B,C,D四點共圓,∴AC為直徑,∵E為AC的中點,∴E為此圓圓心,∵F為弦BD中點,∴EF⊥BD,連接BE,∴BE=AC===;作DM⊥AB,DN⊥BC延長線,∠BAD=∠BCN,在△ADM和△CDN中,,∴△ADM≌△CDN(AAS),∴AM=CN,DM=DN,∵∠DMB=∠DNC=∠ABC=90°,∴四邊形BNDM為矩形,又∵DM=DN,∴矩形BNDM為正方形,∴BM=BN,設AM=CN=x,BM=AB-AM=12-x=BN=5+x,∴12-x=5+x,x=,BN=,∵BD為正方形BNDM的對角線,∴BD=BN=,BF=BD=,∴EF===.故答案為.【點睛】本題考查了正方形的性質與全等三角形的性質,解題的關鍵是熟練的掌握正方形與全等三角形的性質與應用.13、答案不唯一,如:(﹣1,﹣1),橫坐標和縱坐標都是負數(shù)即可.【解析】

讓橫坐標、縱坐標為負數(shù)即可.【詳解】在第三象限內點的坐標為:(﹣1,﹣1)(答案不唯一).故答案為答案不唯一,如:(﹣1,﹣1),橫坐標和縱坐標都是負數(shù)即可.14、7【解析】

根據(jù)翻折變換的性質可得BE=BC,DE=CD,然后求出AE,再求出△ADE的周長=AC+AE.【詳解】∵折疊這個三角形點C落在AB邊上的點E處,折痕為BD,∴BE=BC,DE=CD,∴AE=AB-BE=AB-BC=8-6=2cm,∴△ADE的周長=AD+DE+AE,=AD+CD+AE,=AC+AE,=5+2,=7cm.故答案為:7.【點睛】本題考查了翻折變換的性質,翻折前后對應邊相等,對應角相等.15、【解析】

根據(jù)題意畫出草圖,可得OG=2,,因此利用三角函數(shù)便可計算的外接圓半徑OA.【詳解】解:如圖,連接、,作于;則,∵六邊形正六邊形,∴是等邊三角形,∴,∴,∴正六邊形的內切圓半徑為2,則其外接圓半徑為.故答案為.【點睛】本題主要考查多邊形的內接圓和外接圓,關鍵在于根據(jù)題意畫出草圖,再根據(jù)三角函數(shù)求解,這是多邊形問題的解題思路.16、【解析】

此題有等腰三角形,所以可作BH⊥CD,交EC于點G,利用三線合一性質及鄰補角互補可得∠BGD=120°,根據(jù)四邊形內角和360°,得到∠ABG+∠ADG=180°.此時再延長GB至K,使AK=AG,構造出等邊△AGK.易證△ABK≌△ADG,從而說明△ABD是等邊三角形,BD=AB=,根據(jù)DG、CG、GH線段之間的關系求出CG長度,在Rt△DBH中利用勾股定理及三角函數(shù)知識得到∠EBG的正切值,然后作EF⊥BG,求出EF,在Rt△EFG中解出EG長度,最后CE=CG+GE求解.【詳解】如圖,作于H,交AC于點G,連接DG.∵,∴BH垂直平分CD,∴,∴,∴,∴,延長GB至K,連接AK使,則是等邊三角形,∴,又,∴≌(),∴,∴是等邊三角形,∴,設,則,,∴,∴,在中,,解得,,當時,,所以,∴,,,作,設,,,,,∴,,∴,則,故答案為【點睛】本題主要考查了等腰三角形的性質及等邊三角形、全等三角形的判定和性質以及勾股定理的運用,綜合性較強,正確作出輔助線是解題的關鍵.三、解答題(共8題,共72分)17、(1)每個月生產成本的下降率為5%;(2)預測4月份該公司的生產成本為342.95萬元.【解析】

(1)設每個月生產成本的下降率為x,根據(jù)2月份、3月份的生產成本,即可得出關于x的一元二次方程,解之取其較小值即可得出結論;(2)由4月份該公司的生產成本=3月份該公司的生產成本×(1﹣下降率),即可得出結論.【詳解】(1)設每個月生產成本的下降率為x,根據(jù)題意得:400(1﹣x)2=361,解得:x1=0.05=5%,x2=1.95(不合題意,舍去).答:每個月生產成本的下降率為5%;(2)361×(1﹣5%)=342.95(萬元),答:預測4月份該公司的生產成本為342.95萬元.【點睛】本題考查了一元二次方程的應用,解題的關鍵是:(1)找準等量關系,正確列出一元二次方程;(2)根據(jù)數(shù)量關系,列式計算.18、(1)7,9,7;(2)應該選派B;【解析】

(1)分別利用平均數(shù)、中位數(shù)、眾數(shù)分析得出答案;(2)利用方差的意義分析得出答案.【詳解】(1)A成績的平均數(shù)為(9+10+4+3+9+7)=7;眾數(shù)為9;B成績排序后為6,7,7,7,7,8,故中位數(shù)為7;故答案為:7,9,7;(2)=[(7﹣9)2+(7﹣10)2+(7﹣4)2+(7﹣3)2+(7﹣9)2+(7﹣7)2]=7;=[(7﹣7)2+(7﹣7)2+(7﹣8)2+(7﹣7)2+(7﹣6)2+(7﹣7)2]=;從方差看,B的方差小,所以B的成績更穩(wěn)定,從投籃穩(wěn)定性考慮應該選派B.【點睛】此題主要考查了中位數(shù)、眾數(shù)、方差的定義,方差是反映一組數(shù)據(jù)的波動大小的一個量.方差越大,則平均值的離散程度越大,穩(wěn)定性也越小;反之,則它與其平均值的離散程度越小,穩(wěn)定性越好.19、證明見解析【解析】

根據(jù)AB=AC,得到,于是得到∠ADB=∠ADC,根據(jù)AD是⊙O的直徑,得到∠B=∠C=90°,根據(jù)三角形的內角和定理得到∠BAD=∠DAC,于是得到結論.【詳解】證明:∵AB=AC,∴,∴∠ADB=∠ADC,∵AD是⊙O的直徑,∴∠B=∠C=90°,∴∠BAD=∠DAC,∴,∴BD=CD.【點睛】本題考查了圓周角定理,熟記圓周角定理是解題的關鍵.20、【解析】

方程組整理后,利用加減消元法求出解即可.【詳解】解:方程組整理得:①+②得:9x=-45,即x=-5,把x=-代入①得:解得:則原方程組的解為【點睛】本題主要考查二元一次方程組的解法,二元一次方程組的解法有兩種:代入消元法和加減消元法,根據(jù)題目選擇合適的方法.21、x=-1.【解析】

解:方程兩邊同乘x-2,得2x=x-2+1解這個方程,得x=-1檢驗:x=-1時,x-2≠0∴原方程的解是x=-1首先去掉分母,觀察可得最簡公分母是(x﹣2),方程兩邊乘最簡公分母,可以把分式方程轉化為整式方程求解,然后解一元一次方程,最后檢驗即可求解22、(1);(2)規(guī)則是公平的;【解析】試題分析:(1)先利用畫樹狀圖展示所有12種等可能的結果數(shù),然后根據(jù)概率公式求解即可;(2)分別計算出小王和小李去植樹的概率即可知道規(guī)則是否公平.試題解析:(1)畫樹狀圖為:共有12種等可能的結果數(shù),其中摸出的球上的數(shù)字之和小于6的情況有9種,所以P(小王)=;(2)不公平,理由如下:∵P(小王)=,P(小李)=,≠,∴規(guī)則不公平.點睛:本題考查的是游戲公平性的判斷.判斷游戲公平性就要計算每個事件的概率,概率相等就公平,否則就不公平.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.23、(1)平均數(shù)5.6(萬元);眾數(shù)是4(萬元);中位數(shù)是5(萬元);(2)今年每個銷售人員統(tǒng)一的銷售標準應是5萬元.【解析】

(1)根據(jù)平均數(shù)公式求得平均數(shù),根據(jù)次數(shù)出現(xiàn)最多的數(shù)確定眾數(shù),按從小到大順序排列好后求得中位數(shù).

(2)根據(jù)平均數(shù),中位數(shù),眾數(shù)的意義回答.【詳解】解:(1)平均數(shù)=(3×1+4×3+5×2+6×1+7×1+8×1+10×1)=5.6(萬元);出現(xiàn)次數(shù)最多的是4萬元,所以眾數(shù)是4(萬元);因為第五,第六個數(shù)均是5萬元,所以中位數(shù)是5(萬元).(2)今年每個銷售人員統(tǒng)一的銷售標準應是5萬元.理由如下:若規(guī)定平均數(shù)5.6萬元為標準,則多數(shù)人無法或不可能超額完成,會挫傷員工的積極性;若規(guī)定眾數(shù)4萬元為標準,則大多數(shù)人不必努力就可以超額完成,不利于提高年銷售額;若規(guī)定中位數(shù)5萬元為標準,則大多數(shù)人能完成或超額完成,少數(shù)人經過努力也能完成.因此把5萬元定為標準比較合理.【點睛】本題考查的知識點是眾數(shù)、平均數(shù)以及中位數(shù),解題的關鍵是熟練的掌握眾數(shù)、平均數(shù)以及中位數(shù).24、(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論