2024屆浙江省金華市蘭溪市實驗中學初中數(shù)學畢業(yè)考試模擬沖刺卷含解析_第1頁
2024屆浙江省金華市蘭溪市實驗中學初中數(shù)學畢業(yè)考試模擬沖刺卷含解析_第2頁
2024屆浙江省金華市蘭溪市實驗中學初中數(shù)學畢業(yè)考試模擬沖刺卷含解析_第3頁
2024屆浙江省金華市蘭溪市實驗中學初中數(shù)學畢業(yè)考試模擬沖刺卷含解析_第4頁
2024屆浙江省金華市蘭溪市實驗中學初中數(shù)學畢業(yè)考試模擬沖刺卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2024屆浙江省金華市蘭溪市實驗中學初中數(shù)學畢業(yè)考試模擬沖刺卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,AB∥CD,F(xiàn)E⊥DB,垂足為E,∠1=60°,則∠2的度數(shù)是()A.60° B.50° C.40° D.30°2.如圖,菱形ABCD的邊長為2,∠B=30°.動點P從點B出發(fā),沿B-C-D的路線向點D運動.設△ABP的面積為y(B、P兩點重合時,△ABP的面積可以看作0),點P運動的路程為x,則y與x之間函數(shù)關系的圖像大致為()A. B. C. D.3.不等式組的解集是()A.x>-1 B.x>3C.-1<x<3 D.x<34.小明在學習了正方形之后,給同桌小文出了道題,從下列四個條件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中選兩個作為補充條件,使?ABCD為正方形(如圖),現(xiàn)有下列四種選法,你認為其中錯誤的是()A.①② B.②③ C.①③ D.②④5.如圖,在中,分別在邊邊上,已知,則的值為()A. B. C. D.6.已知x+=3,則x2+=()A.7 B.9 C.11 D.87.如圖,已知點A、B、C、D在⊙O上,圓心O在∠D內(nèi)部,四邊形ABCO為平行四邊形,則∠DAO與∠DCO的度數(shù)和是()A.60° B.45° C.35° D.30°8.如圖,平行于BC的直線DE把△ABC分成面積相等的兩部分,則的值為()A.1 B. C.-1 D.+19.如圖,在平面直角坐標中,正方形ABCD與正方形BEFG是以原點O為位似中心的位似圖形,且相似比為,點A,B,E在x軸上,若正方形BEFG的邊長為6,則C點坐標為()A.(3,2) B.(3,1) C.(2,2) D.(4,2)10.我們從不同的方向觀察同一物體時,可能看到不同的圖形,則從正面、左面、上面觀察都不可能看到矩形的是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在矩形ABCD中,點E是邊CD的中點,將△ADE沿AE折疊后得到△AFE,且點F在矩形ABCD內(nèi)部.將AF延長交邊BC于點G.若,則(用含k的代數(shù)式表示).12.已知一組數(shù)據(jù)-3,x,-2,3,1,6的眾數(shù)為3,則這組數(shù)據(jù)的中位數(shù)為______.13.四張背面完全相同的卡片上分別寫有0、、、、四個實數(shù),如果將卡片字面朝下隨意放在桌子上,任意取一張,那么抽到有理數(shù)的概率為___________.14.廢舊電池對環(huán)境的危害十分巨大,一粒紐扣電池能污染600立方米的水(相當于一個人一生的飲水量).某班有50名學生,如果每名學生一年丟棄一粒紐扣電池,且都沒有被回收,那么被該班學生一年丟棄的紐扣電池能污染的水用科學記數(shù)法表示為_____立方米.15.如圖,在矩形ABCD中,DE⊥AC,垂足為E,且tan∠ADE=,AC=5,則AB的長____.16.把兩個同樣大小的含45°角的三角尺按如圖所示的方式放置,其中一個三角尺的銳角頂點與另一個的直角頂點重合于點A,且另三個銳角頂點B,C,D在同一直線上.若AB=,則CD=_____.17.關于x的一元二次方程x2﹣2x+m﹣1=0有兩個實數(shù)根,則m的取值范圍是_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,矩形ABCD中,O是AC與BD的交點,過O點的直線EF與AB、CD的延長線分別交于E、F.(1)證明:△BOE≌△DOF;(2)當EF⊥AC時,求證四邊形AECF是菱形.19.(5分)某居民小區(qū)一處圓柱形的輸水管道破裂,維修人員為更換管道,需確定管道圓形截面的半徑,如圖是水平放置的破裂管道有水部分的截面.(1)請你用直尺和圓規(guī)作出這個輸水管道的圓形截面的圓心(保留作圖痕跡);(2)若這個輸水管道有水部分的水面寬AB=8cm,水面最深地方的高度為2cm,求這個圓形截面的半徑.20.(8分)如圖,拋物線與x軸相交于A、B兩點,與y軸的交于點C,其中A點的坐標為(﹣3,0),點C的坐標為(0,﹣3),對稱軸為直線x=﹣1.(1)求拋物線的解析式;(2)若點P在拋物線上,且S△POC=4S△BOC,求點P的坐標;(3)設點Q是線段AC上的動點,作QD⊥x軸交拋物線于點D,求線段QD長度的最大值.21.(10分)如圖,AB是⊙O的直徑,D、D為⊙O上兩點,CF⊥AB于點F,CE⊥AD交AD的延長線于點E,且CE=CF.(1)求證:CE是⊙O的切線;(2)連接CD、CB,若AD=CD=a,求四邊形ABCD面積.22.(10分)如圖,在△ABC中,∠BAC=90°,AB=AC,D為AB邊上一點,連接CD,過點A作AE⊥CD于點E,且交BC于點F,AG平分∠BAC交CD于點G.求證:BF=AG.23.(12分)已知函數(shù)的圖象與函數(shù)的圖象交于點.(1)若,求的值和點P的坐標;(2)當時,結(jié)合函數(shù)圖象,直接寫出實數(shù)的取值范圍.24.(14分)某校為了解本校學生每周參加課外輔導班的情況,隨機調(diào)査了部分學生一周內(nèi)參加課外輔導班的學科數(shù),并將調(diào)查結(jié)果繪制成如圖1、圖2所示的兩幅不完整統(tǒng)計圖(其中A:0個學科,B:1個學科,C:2個學科,D:3個學科,E:4個學科或以上),請根據(jù)統(tǒng)計圖中的信息,解答下列問題:請將圖2的統(tǒng)計圖補充完整;根據(jù)本次調(diào)查的數(shù)據(jù),每周參加課外輔導班的學科數(shù)的眾數(shù)是個學科;若該校共有2000名學生,根據(jù)以上調(diào)查結(jié)果估計該校全體學生一周內(nèi)參加課外輔導班在3個學科(含3個學科)以上的學生共有人.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】

由EF⊥BD,∠1=60°,結(jié)合三角形內(nèi)角和為180°即可求出∠D的度數(shù),再由“兩直線平行,同位角相等”即可得出結(jié)論.【詳解】解:在△DEF中,∠1=60°,∠DEF=90°,

∴∠D=180°-∠DEF-∠1=30°.

∵AB∥CD,

∴∠2=∠D=30°.

故選D.【點睛】本題考查平行線的性質(zhì)以及三角形內(nèi)角和為180°,解題關鍵是根據(jù)平行線的性質(zhì),找出相等、互余或互補的角.2、C【解析】

先分別求出點P從點B出發(fā),沿B→C→D向終點D勻速運動時,當0<x≤2和2<x≤4時,y與x之間的函數(shù)關系式,即可得出函數(shù)的圖象.【詳解】由題意知,點P從點B出發(fā),沿B→C→D向終點D勻速運動,則

當0<x≤2,y=x,

當2<x≤4,y=1,

由以上分析可知,這個分段函數(shù)的圖象是C.

故選C.3、B【解析】

根據(jù)解不等式組的方法可以求得原不等式組的解集.【詳解】,解不等式①,得x>-1,解不等式②,得x>1,由①②可得,x>1,故原不等式組的解集是x>1.故選B.【點睛】本題考查解一元一次不等式組,解題的關鍵是明確解一元一次不等式組的方法.4、B【解析】

A、∵四邊形ABCD是平行四邊形,當①AB=BC時,平行四邊形ABCD是菱形,當②∠ABC=90°時,菱形ABCD是正方形,故此選項正確,不合題意;B、∵四邊形ABCD是平行四邊形,∴當②∠ABC=90°時,平行四邊形ABCD是矩形,當AC=BD時,這是矩形的性質(zhì),無法得出四邊形ABCD是正方形,故此選項錯誤,符合題意;C、∵四邊形ABCD是平行四邊形,當①AB=BC時,平行四邊形ABCD是菱形,當③AC=BD時,菱形ABCD是正方形,故此選項正確,不合題意;D、∵四邊形ABCD是平行四邊形,∴當②∠ABC=90°時,平行四邊形ABCD是矩形,當④AC⊥BD時,矩形ABCD是正方形,故此選項正確,不合題意.故選C.5、B【解析】

根據(jù)DE∥BC得到△ADE∽△ABC,根據(jù)相似三角形的性質(zhì)解答.【詳解】解:∵,

∴,

∵DE∥BC,

∴△ADE∽△ABC,

∴,

故選:B.【點睛】本題考查了相似三角形的判定和性質(zhì),掌握相似三角形的對應邊的比等于相似比是解題的關鍵.6、A【解析】

根據(jù)完全平方公式即可求出答案.【詳解】∵(x+)2=x2+2+∴9=2+x2+,∴x2+=7,故選A.【點睛】本題考查完全平方公式,解題的關鍵是熟練運用完全平方公式.7、A【解析】試題解析:連接OD,∵四邊形ABCO為平行四邊形,∴∠B=∠AOC,∵點A.B.C.D在⊙O上,由圓周角定理得,解得,∵OA=OD,OD=OC,∴∠DAO=∠ODA,∠ODC=∠DCO,故選A.點睛:在同圓或等圓中,同弧或等弧所對的圓周角等于圓心角的一半.8、C【解析】【分析】由DE∥BC可得出△ADE∽△ABC,利用相似三角形的性質(zhì)結(jié)合S△ADE=S四邊形BCED,可得出,結(jié)合BD=AB﹣AD即可求出的值.【詳解】∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴△ADE∽△ABC,∴,∵S△ADE=S四邊形BCED,S△ABC=S△ADE+S四邊形BCED,∴,∴,故選C.【點睛】本題考查了相似三角形的判定與性質(zhì),牢記相似三角形的面積比等于相似比的平方是解題的關鍵.9、A【解析】

∵正方形ABCD與正方形BEFG是以原點O為位似中心的位似圖形,且相似比為,∴=,∵BG=6,∴AD=BC=2,∵AD∥BG,∴△OAD∽△OBG,∴=,∴=,解得:OA=1,∴OB=3,∴C點坐標為:(3,2),故選A.10、C【解析】

主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看,所得到的圖形.依此找到從正面、左面、上面觀察都不可能看到矩形的圖形.【詳解】A、主視圖為長方形,左視圖為長方形,俯視圖為圓,故本選項錯誤;B、主視圖為長方形,左視圖為長方形,俯視圖為長方形,故本選項錯誤;C、主視圖為等腰梯形,左視圖為等腰梯形,俯視圖為圓環(huán),從正面、左面、上面觀察都不可能看到長方形,故本選項正確;D、主視圖為三角形,左視圖為三角形,俯視圖為有對角線的矩形,故本選項錯誤.故選C.【點睛】本題重點考查了三視圖的定義考查學生的空間想象能力,關鍵是根據(jù)主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看,所得到的圖形解答.二、填空題(共7小題,每小題3分,滿分21分)11、。【解析】試題分析:如圖,連接EG,∵,∴設,則?!唿cE是邊CD的中點,∴。∵△ADE沿AE折疊后得到△AFE,∴。易證△EFG≌△ECG(HL),∴?!??!嘣赗t△ABG中,由勾股定理得:,即?!??!啵ㄖ蝗≌担!唷?2、【解析】分析:找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個數(shù)(或兩個數(shù)的平均數(shù))為中位數(shù);眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不只一個.

詳解:∵-3,x,-1,3,1,6的眾數(shù)是3,

∴x=3,

先對這組數(shù)據(jù)按從小到大的順序重新排序-3、-1、1、3、3、6位于最中間的數(shù)是1,3,

∴這組數(shù)的中位數(shù)是=1.

故答案為:1.點睛:本題屬于基礎題,考查了確定一組數(shù)據(jù)的中位數(shù)和眾數(shù)的能力.一些學生往往對這個概念掌握不清楚,計算方法不明確而誤選其它選項,注意找中位數(shù)的時候一定要先排好順序,然后再根據(jù)奇數(shù)和偶數(shù)個來確定中位數(shù),如果數(shù)據(jù)有奇數(shù)個,則正中間的數(shù)字即為所求,如果是偶數(shù)個則找中間兩位數(shù)的平均數(shù).13、【解析】

根據(jù)概率的求法,找準兩點:①全部情況的總數(shù);②符合條件的情況數(shù)目;二者的比值就是其發(fā)生的概率.【詳解】∵在0.、、、這四個實數(shù)種,有理數(shù)有0.、、這3個,∴抽到有理數(shù)的概率為,故答案為.【點睛】此題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.14、3×1【解析】因為一粒紐扣電池能污染600立方米的水,如果每名學生一年丟棄一粒紐扣電池,那么被該班學生一年丟棄的紐扣電池能污染的水就是:600×50=30000,用科學記數(shù)法表示為3×1立方米.

故答案為3×1.15、3.【解析】

先根據(jù)同角的余角相等證明∠ADE=∠ACD,在△ADC根據(jù)銳角三角函數(shù)表示用含有k的代數(shù)式表示出AD=4k和DC=3k,從而根據(jù)勾股定理得出AC=5k,又AC=5,從而求出DC的值即為AB.【詳解】∵四邊形ABCD是矩形,∴∠ADC=90°,AB=CD,∵DE⊥AC,∴∠AED=90°,∴∠ADE+∠DAE=90°,∠DAE+∠ACD=90°,∴∠ADE=∠ACD,∴tan∠ACD=tan∠ADE==,設AD=4k,CD=3k,則AC=5k,∴5k=5,∴k=1,∴CD=AB=3,故答案為3.【點睛】本題考查矩形的性質(zhì)和利用銳角三角函數(shù)解直角三角形,解決此類問題時需要將已知角的三角函數(shù)、已知邊、未知邊,轉(zhuǎn)換到同一直角三角形中,然后解決問題.16、【解析】

先利用等腰直角三角形的性質(zhì)求出BC=2,BF=AF=1,再利用勾股定理求出DF,即可得出結(jié)論.【詳解】如圖,過點A作AF⊥BC于F,在Rt△ABC中,∠B=45°,∴BC=AB=2,BF=AF=AB=1,∵兩個同樣大小的含45°角的三角尺,∴AD=BC=2,在Rt△ADF中,根據(jù)勾股定理得,DF==∴CD=BF+DF-BC=1+-2=-1,故答案為-1.【點睛】此題主要考查了勾股定理,等腰直角三角形的性質(zhì),正確作出輔助線是解本題的關鍵.17、m≤1【解析】

根據(jù)一元二次方程有實數(shù)根,得出△≥0,建立關于m的不等式,求出m的取值范圍即可.【詳解】解:由題意知,△=4﹣4(m﹣1)≥0,∴m≤1,故答案為:m≤1.【點睛】此題考查了根的判別式,掌握一元二次方程根的情況與判別式△的關系:△>0,方程有兩個不相等的實數(shù)根;△=0,方程有兩個相等的實數(shù)根;△<0,方程沒有實數(shù)根是本題的關鍵.三、解答題(共7小題,滿分69分)18、(1)(2)證明見解析【解析】

(1)根據(jù)矩形的性質(zhì),通過“角角邊”證明三角形全等即可;(2)根據(jù)題意和(1)可得AC與EF互相垂直平分,所以四邊形AECF是菱形.【詳解】(1)證明:∵四邊形ABCD是矩形,∴OB=OD,AE∥CF,∴∠E=∠F(兩直線平行,內(nèi)錯角相等),在△BOE與△DOF中,,∴△BOE≌△DOF(AAS).(2)證明:∵四邊形ABCD是矩形,∴OA=OC,又∵由(1)△BOE≌△DOF得,OE=OF,∴四邊形AECF是平行四邊形,又∵EF⊥AC,∴四邊形AECF是菱形.19、(1)詳見解析;(2)這個圓形截面的半徑是5cm.【解析】

(1)根據(jù)尺規(guī)作圖的步驟和方法做出圖即可;(2)先過圓心作半徑,交于點,設半徑為,得出、的長,在中,根據(jù)勾股定理求出這個圓形截面的半徑.【詳解】(1)如圖,作線段AB的垂直平分線l,與弧AB交于點C,作線段AC的垂直平分線l′與直線l交于點O,點O即為所求作的圓心.(2)如圖,過圓心O作半徑CO⊥AB,交AB于點D,設半徑為r,則AD=AB=4,OD=r-2,在Rt△AOD中,r2=42+(r-2)2,解得r=5,答:這個圓形截面的半徑是5cm.【點睛】此題考查了垂徑定理和勾股定理,關鍵是根據(jù)題意畫出圖形,再根據(jù)勾股定理進行求解.20、(1)y=x2+2x﹣3;(2)點P的坐標為(2,21)或(﹣2,5);(3).【解析】

(1)先根據(jù)點A坐標及對稱軸得出點B坐標,再利用待定系數(shù)法求解可得;(2)利用(1)得到的解析式,可設點P的坐標為(a,a2+2a﹣3),則點P到OC的距離為|a|.然后依據(jù)S△POC=2S△BOC列出關于a的方程,從而可求得a的值,于是可求得點P的坐標;(3)先求得直線AC的解析式,設點D的坐標為(x,x2+2x﹣3),則點Q的坐標為(x,﹣x﹣3),然后可得到QD與x的函數(shù)的關系,最后利用配方法求得QD的最大值即可.【詳解】解:(1)∵拋物線與x軸的交點A(﹣3,0),對稱軸為直線x=﹣1,∴拋物線與x軸的交點B的坐標為(1,0),設拋物線解析式為y=a(x+3)(x﹣1),將點C(0,﹣3)代入,得:﹣3a=﹣3,解得a=1,則拋物線解析式為y=(x+3)(x﹣1)=x2+2x﹣3;(2)設點P的坐標為(a,a2+2a﹣3),則點P到OC的距離為|a|.∵S△POC=2S△BOC,∴?OC?|a|=2×OC?OB,即×3×|a|=2××3×1,解得a=±2.當a=2時,點P的坐標為(2,21);當a=﹣2時,點P的坐標為(﹣2,5).∴點P的坐標為(2,21)或(﹣2,5).(3)如圖所示:設AC的解析式為y=kx﹣3,將點A的坐標代入得:﹣3k﹣3=0,解得k=﹣1,∴直線AC的解析式為y=﹣x﹣3.設點D的坐標為(x,x2+2x﹣3),則點Q的坐標為(x,﹣x﹣3).∴QD=﹣x﹣3﹣(x2+2x﹣3)=﹣x﹣3﹣x2﹣2x+3=﹣x2﹣3x=﹣(x2+3x+﹣)=﹣(x+)2+,∴當x=﹣時,QD有最大值,QD的最大值為.【點睛】本題主要考查了二次函數(shù)綜合題,解題的關鍵是熟練掌握二次函數(shù)的性質(zhì)和應用.21、(1)證明見解析;(2)3【解析】

(1)連接OC,AC,可先證明AC平分∠BAE,結(jié)合圓的性質(zhì)可證明OC∥AE,可得∠OCB=90°,可證得結(jié)論;(2)可先證得四邊形AOCD為平行四邊形,再證明△OCB為等邊三角形,可求得CF、AB,利用梯形的面積公式可求得答案.【詳解】(1)證明:連接OC,AC.∵CF⊥AB,CE⊥AD,且CE=CF.∴∠CAE=∠CAB.∵OC=OA,∴∠CAB=∠OCA.∴∠CAE=∠OCA.∴OC∥AE.∴∠OCE+∠AEC=180°,∵∠AEC=90°,∴∠OCE=90°即OC⊥CE,∵OC是⊙O的半徑,點C為半徑外端,∴CE是⊙O的切線.(2)解:∵AD=CD,∴∠DAC=∠DCA=∠CAB,∴DC∥AB,∵∠CAE=∠OCA,∴OC∥AD,∴四邊形AOCD是平行四邊形,∴OC=AD=a,AB=2a,∵∠CAE=∠CAB,∴CD=CB=a,∴CB=OC=OB,∴△OCB是等邊三角形,在Rt△CFB中,CF=CB∴S四邊形ABCD=12(DC+AB)?CF=【點睛】本題主要考查切線的判定,掌握切線的兩種判定方法是解題的關鍵,即有切點時連接圓心和切點,然后證明垂直,沒有切點時,過圓心作垂直,證明圓心到直線的距離等于半徑.22、見解析【解析】

根據(jù)角平分線的性質(zhì)和直角三角形性質(zhì)求∠BAF=∠ACG.進一步證明△ABF≌△CAG,從而證明BF=AG.【詳解】證明:∵∠BAC=90°,,AB=AC,∴∠B=∠ACB=45°,又∵AG平分

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論