2022屆呼倫貝爾市重點中學中考猜題數學試卷含解析_第1頁
2022屆呼倫貝爾市重點中學中考猜題數學試卷含解析_第2頁
2022屆呼倫貝爾市重點中學中考猜題數學試卷含解析_第3頁
2022屆呼倫貝爾市重點中學中考猜題數學試卷含解析_第4頁
2022屆呼倫貝爾市重點中學中考猜題數學試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022屆呼倫貝爾市重點中學中考猜題數學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖1,等邊△ABC的邊長為3,分別以頂點B、A、C為圓心,BA長為半徑作弧AC、弧CB、弧BA,我們把這三條弧所組成的圖形稱作萊洛三角形,顯然萊洛三角形仍然是軸對稱圖形.設點I為對稱軸的交點,如圖2,將這個圖形的頂點A與等邊△DEF的頂點D重合,且AB⊥DE,DE=2π,將它沿等邊△DEF的邊作無滑動的滾動,當它第一次回到起始位置時,這個圖形在運動中掃過區(qū)域面積是()A.18π B.27π C.π D.45π2.對于一組統(tǒng)計數據1,1,6,5,1.下列說法錯誤的是()A.眾數是1 B.平均數是4 C.方差是1.6 D.中位數是63.3的倒數是()A. B. C. D.4.下列計算正確的是()A. B.(﹣a2)3=a6 C. D.6a2×2a=12a35.如圖,在RtΔABC中,AB=9,BC=6,∠B=90°,將ΔABC折疊,使A點與BC的中點D重合,折痕為MN,則線段BN的長為()A.52 B.53 C.46.下列圖案中,既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.7.如圖,矩形ABCD的邊長AD=3,AB=2,E為AB的中點,F(xiàn)在邊BC上,且BF=2FC,AF分別與DE、DB相交于點M,N,則MN的長為()A. B. C. D.8.對于二次函數,下列說法正確的是()A.當x>0,y隨x的增大而增大B.當x=2時,y有最大值-3C.圖像的頂點坐標為(-2,-7)D.圖像與x軸有兩個交點9.如圖所示的幾何體的俯視圖是()A. B. C. D.10.方程(m–2)x2+3mx+1=0是關于x的一元二次方程,則()A.m≠±2 B.m=2 C.m=–2 D.m≠2二、填空題(共7小題,每小題3分,滿分21分)11.已知三角形兩邊的長分別為1、5,第三邊長為整數,則第三邊的長為_____.12.已知一個正六邊形的邊心距為,則它的半徑為______.13.分解因式:.14.如圖的三角形紙片中,AB=8cm,BC=6cm,AC=5cm.沿過點B的直線折疊三角形,使點C落在AB邊的點E處,折痕為BD.則△AED的周長為____cm.15.如圖,a∥b,∠1=110°,∠3=40°,則∠2=_____°.16.如果拋物線y=(m﹣1)x2的開口向上,那么m的取值范圍是__.17.4的平方根是.三、解答題(共7小題,滿分69分)18.(10分)某中學采用隨機的方式對學生掌握安全知識的情況進行測評,并按成績高低分成優(yōu)、良、中、差四個等級進行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖.請根據有關信息解答:(1)接受測評的學生共有________人,扇形統(tǒng)計圖中“優(yōu)”部分所對應扇形的圓心角為________°,并補全條形統(tǒng)計圖;(2)若該校共有學生1200人,請估計該校對安全知識達到“良”程度的人數;(3)測評成績前五名的學生恰好3個女生和2個男生,現(xiàn)從中隨機抽取2人參加市安全知識競賽,請用樹狀圖或列表法求出抽到1個男生和1個女生的概率.19.(5分)如圖,在中,,,點D是BC上任意一點,將線段AD繞點A逆時針方向旋轉,得到線段AE,連結EC.依題意補全圖形;求的度數;若,,將射線DA繞點D順時針旋轉交EC的延長線于點F,請寫出求AF長的思路.20.(8分)在平面直角坐標系中,函數()的圖象經過點(4,1),直線與圖象交于點,與軸交于點.求的值;橫、縱坐標都是整數的點叫做整點.記圖象在點,之間的部分與線段,,圍成的區(qū)域(不含邊界)為.①當時,直接寫出區(qū)域內的整點個數;②若區(qū)域內恰有4個整點,結合函數圖象,求的取值范圍.21.(10分)已知:如圖,平行四邊形ABCD中,E、F分別是邊BC和AD上的點,且BE=DF,求證:AE=CF22.(10分)如圖,已知一次函數y=x+m的圖象與x軸交于點A(﹣4,0),與二次函數y=ax1+bx+c的圖象交于y軸上一點B,該二次函數的頂點C在x軸上,且OC=1.(1)求點B坐標;(1)求二次函數y=ax1+bx+c的解析式;(3)設一次函數y=x+m的圖象與二次函數y=ax1+bx+c的圖象的另一交點為D,已知P為x軸上的一個動點,且△PBD是以BD為直角邊的直角三角形,求點P的坐標.23.(12分)計算:|﹣|+(π﹣2017)0﹣2sin30°+3﹣1.24.(14分)如圖,AB為⊙O的直徑,點D、E位于AB兩側的半圓上,射線DC切⊙O于點D,已知點E是半圓弧AB上的動點,點F是射線DC上的動點,連接DE、AE,DE與AB交于點P,再連接FP、FB,且∠AED=45°.求證:CD∥AB;填空:①當∠DAE=時,四邊形ADFP是菱形;②當∠DAE=時,四邊形BFDP是正方形.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】

先判斷出萊洛三角形等邊△DEF繞一周掃過的面積如圖所示,利用矩形的面積和扇形的面積之和即可.【詳解】如圖1中,∵等邊△DEF的邊長為2π,等邊△ABC的邊長為3,∴S矩形AGHF=2π×3=6π,由題意知,AB⊥DE,AG⊥AF,

∴∠BAG=120°,∴S扇形BAG==3π,∴圖形在運動過程中所掃過的區(qū)域的面積為3(S矩形AGHF+S扇形BAG)=3(6π+3π)=27π;故選B.【點睛】本題考查軌跡,弧長公式,萊洛三角形的周長,矩形,扇形面積公式,解題的關鍵是判斷出萊洛三角形繞等邊△DEF掃過的圖形.2、D【解析】

根據中位數、眾數、方差等的概念計算即可得解.【詳解】A、這組數據中1都出現(xiàn)了1次,出現(xiàn)的次數最多,所以這組數據的眾數為1,此選項正確;B、由平均數公式求得這組數據的平均數為4,故此選項正確;C、S2=[(1﹣4)2+(1﹣4)2+(6﹣4)2+(5﹣4)2+(1﹣4)2]=1.6,故此選項正確;D、將這組數據按從大到校的順序排列,第1個數是1,故中位數為1,故此選項錯誤;故選D.考點:1.眾數;2.平均數;1.方差;4.中位數.3、C【解析】根據倒數的定義可知.解:3的倒數是.主要考查倒數的定義,要求熟練掌握.需要注意的是:倒數的性質:負數的倒數還是負數,正數的倒數是正數,0沒有倒數.倒數的定義:若兩個數的乘積是1,我們就稱這兩個數互為倒數.4、D【解析】

根據平方根的運算法則和冪的運算法則進行計算,選出正確答案.【詳解】,A選項錯誤;(﹣a2)3=-a6,B錯誤;,C錯誤;.6a2×2a=12a3,D正確;故選:D.【點睛】本題考查學生對平方根及冪運算的能力的考查,熟練掌握平方根運算和冪運算法則是解答本題的關鍵.5、C【解析】

設BN=x,則由折疊的性質可得DN=AN=9-x,根據中點的定義可得BD=3,在Rt△BND中,根據勾股定理可得關于x的方程,解方程即可求解.【詳解】設BN=x,則AN=9-x.由折疊的性質,得DN=AN=9-x.因為點D是BC的中點,所以BD=3.在RtΔNBD中,由勾股定理,得BN即x2解得x=4,故線段BN的長為4.故選C.【點睛】此題考查了折疊的性質,勾股定理,中點的定義以及方程思想,熟練掌握折疊的性質及勾股定理是解答本題的關鍵.6、B【解析】

根據軸對稱圖形與中心對稱圖形的概念求解.【詳解】A、是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;

B、是軸對稱圖形,也是中心對稱圖形,故此選項正確;

C、不是軸對稱圖形,是中心對稱圖形,故此選項錯誤;

D、不是軸對稱圖形,是中心對稱圖形,故此選項錯誤.

故選B.【點睛】考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.7、B【解析】

過F作FH⊥AD于H,交ED于O,于是得到FH=AB=1,根據勾股定理得到AF===,根據平行線分線段成比例定理得到,OH=AE=,由相似三角形的性質得到=,求得AM=AF=,根據相似三角形的性質得到=,求得AN=AF=,即可得到結論.【詳解】過F作FH⊥AD于H,交ED于O,則FH=AB=1.∵BF=1FC,BC=AD=3,∴BF=AH=1,F(xiàn)C=HD=1,∴AF===,∵OH∥AE,∴=,∴OH=AE=,∴OF=FH﹣OH=1﹣=,∵AE∥FO,∴△AME∽△FMO,∴=,∴AM=AF=,∵AD∥BF,∴△AND∽△FNB,∴=,∴AN=AF=,∴MN=AN﹣AM=﹣=,故選B.【點睛】構造相似三角形是本題的關鍵,且求長度問題一般需用到勾股定理來解決,常作垂線8、B【解析】

二次函數,所以二次函數的開口向下,當x<2,y隨x的增大而增大,選項A錯誤;當x=2時,取得最大值,最大值為-3,選項B正確;頂點坐標為(2,-3),選項C錯誤;頂點坐標為(2,-3),拋物線開口向下可得拋物線與x軸沒有交點,選項D錯誤,故答案選B.考點:二次函數的性質.9、D【解析】

找到從上面看所得到的圖形即可,注意所有看到的棱都應表現(xiàn)在俯視圖中.【詳解】從上往下看,該幾何體的俯視圖與選項D所示視圖一致.故選D.【點睛】本題考查了簡單組合體三視圖的知識,俯視圖是從物體的上面看得到的視圖.10、D【解析】試題分析:根據一元二次方程的概念,可知m-2≠0,解得m≠2.故選D二、填空題(共7小題,每小題3分,滿分21分)11、2【解析】分析:根據三角形的三邊關系“任意兩邊之和>第三邊,任意兩邊之差<第三邊”,求得第三邊的取值范圍,再進一步根據第三邊是整數求解.詳解:根據三角形的三邊關系,得第三邊>4,而<1.又第三條邊長為整數,則第三邊是2.點睛:此題主要是考查了三角形的三邊關系,同時注意整數這一條件.12、2【解析】試題分析:設正六邊形的中心是O,一邊是AB,過O作OG⊥AB與G,在直角△OAG中,根據三角函數即可求得OA.解:如圖所示,在Rt△AOG中,OG=,∠AOG=30°,∴OA=OG÷cos30°=÷=2;故答案為2.點睛:本題主要考查正多邊形和圓的關系.解題的關鍵在于利用正多邊形的半徑、邊心距構造直角三角形并利用解直角三角形的知識求解.13、【解析】分析:要將一個多項式分解因式的一般步驟是首先看各項有沒有公因式,若有公因式,則把它提取出來,之后再觀察是否是完全平方公式或平方差公式,若是就考慮用公式法繼續(xù)分解因式.因此,先提取公因式后繼續(xù)應用平方差公式分解即可:.14、7【解析】

根據翻折變換的性質可得BE=BC,DE=CD,然后求出AE,再求出△ADE的周長=AC+AE.【詳解】∵折疊這個三角形點C落在AB邊上的點E處,折痕為BD,∴BE=BC,DE=CD,∴AE=AB-BE=AB-BC=8-6=2cm,∴△ADE的周長=AD+DE+AE,=AD+CD+AE,=AC+AE,=5+2,=7cm.故答案為:7.【點睛】本題考查了翻折變換的性質,翻折前后對應邊相等,對應角相等.15、1【解析】試題解析:如圖,∵a∥b,∠3=40°,∴∠4=∠3=40°.∵∠1=∠2+∠4=110°,∴∠2=110°-∠4=110°-40°=1°.故答案為:1.16、m>2【解析】試題分析:根據二次函數的性質可知,當拋物線開口向上時,二次項系數m﹣2>2.解:因為拋物線y=(m﹣2)x2的開口向上,所以m﹣2>2,即m>2,故m的取值范圍是m>2.考點:二次函數的性質.17、±1.【解析】試題分析:∵,∴4的平方根是±1.故答案為±1.考點:平方根.三、解答題(共7小題,滿分69分)18、(1)80,135°,條形統(tǒng)計圖見解析;(2)825人;(3)圖表見解析,(抽到1男1女).【解析】試題分析:(1)、根據“中”的人數和百分比得出總人數,然后求出優(yōu)所占的百分比,得出圓心角的度數;(2)、根據題意得出“良”和“優(yōu)”兩種所占的百分比,從而得出全校的總數;(3)、根據題意利用列表法或者樹狀圖法畫出所有可能出現(xiàn)的情況,然后根據概率的計算法則求出概率.試題解析:(1)80,135°;條形統(tǒng)計圖如圖所示(2)該校對安全知識達到“良”程度的人數:(人)(3)解法一:列表如下:所有等可能的結果為20種,其中抽到一男一女的為12種,所以(抽到1男1女).女1女2女3男1男2女1---女2女1女3女1男1女1男2女1女2女1女2---女3女2男1女2男2女2女3女1女3女2女3---男1女3男2女3男1女1男1女2男1女3男1---男2男1男2女1男2女2男2女3男2男1男2---解法二:畫樹狀圖如下:所有等可能的結果為20種,其中抽到一男一女的為12種,所以(抽到1男1女).19、(1)見解析;(2)90°;(3)解題思路見解析.【解析】

(1)將線段AD繞點A逆時針方向旋轉90°,得到線段AE,連結EC.(2)先判定△ABD≌△ACE,即可得到,再根據,即可得出;(3)連接DE,由于△ADE為等腰直角三角形,所以可求;由,,可求的度數和的度數,從而可知DF的長;過點A作于點H,在Rt△ADH中,由,AD=1可求AH、DH的長;由DF、DH的長可求HF的長;在Rt△AHF中,由AH和HF,利用勾股定理可求AF的長.【詳解】解:如圖,線段AD繞點A逆時針方向旋轉,得到線段AE.,,.,.,在和中,≌.,中,,,.;Ⅰ連接DE,由于為等腰直角三角形,所以可求;Ⅱ由,,可求的度數和的度數,從而可知DF的長;Ⅲ過點A作于點H,在中,由,可求AH、DH的長;Ⅳ由DF、DH的長可求HF的長;Ⅴ在中,由AH和HF,利用勾股定理可求AF的長.故答案為(1)見解析;(2)90°;(3)解題思路見解析.【點睛】本題主要考查旋轉的性質,等腰直角三角形的性質的運用,解題的關鍵是要注意對應點與旋轉中心所連線段的夾角等于旋轉角.20、(1)4;(2)①3個.(1,0),(2,0),(3,0).②或.【解析】分析:(1)根據點(4,1)在()的圖象上,即可求出的值;(2)①當時,根據整點的概念,直接寫出區(qū)域內的整點個數即可.②分.當直線過(4,0)時,.當直線過(5,0)時,.當直線過(1,2)時,.當直線過(1,3)時四種情況進行討論即可.詳解:(1)解:∵點(4,1)在()的圖象上.∴,∴.(2)①3個.(1,0),(2,0),(3,0).②.當直線過(4,0)時:,解得.當直線過(5,0)時:,解得.當直線過(1,2)時:,解得.當直線過(1,3)時:,解得∴綜上所述:或.點睛:屬于反比例函數和一次函數的綜合題,考查待定系數法求反比例函數解析式,一次函數的圖象與性質,掌握整點的概念是解題的關鍵,注意分類討論思想在解題中的應用.21、詳見解析【解析】

根據平行四邊形的性質和已知條件證明△ABE≌△CDF,再利用全等三角形的性質:即可得到AE=CF.【詳解】證:∵四邊形ABCD是平行四邊形,∴AB=CD,∠B=∠D,又∵BE=DF,∴△ABE≌△CDF,∴AE=CF.(其他證法也可)22、(1)B(0,1);(1)y=0.5x1﹣1x+1;(3)P1(1,0)和P1(7.15,0);【解析】

(1)根據y=0.5x+m交x軸于點A,進而得出m的值,再利用與y軸交于點B,即可得出B點坐標;(1)二次函數y=ax1+bx+c的圖象與x軸只有唯一的交點C,且OC=1.得出可設二次函數y=ax1+bx+c=a(x﹣1)1,進而求出即可;(3)根據當B為直角頂點,當D為直角頂點時,分別利用三角形相似對應邊成比例求出即可.【詳解】(1)∵y=x+1交x軸于點A(﹣4,0),∴0=×(﹣4)+m,∴m=1,與y軸交于點B,∵x=0,∴y=1∴B點坐標為:(0,1),(1)∵二次函數y=ax1+bx+c的圖象與x軸只有唯一的交點C,且OC=1∴可設二次函數y=a(x﹣1)1把B(0,1)代入得:a=0.5∴二次函數的解析式:y=0.5x1﹣1x+1;(3)(Ⅰ)當B為直角頂點時,過B作BP1⊥AD交x軸于P1點由Rt△AOB∽Rt△BOP1∴,∴,得:OP1=1,∴P1(1,0),(Ⅱ)作P1D⊥BD,連接BP1,將y=0.5x+1與y=0.5x1﹣1x+1聯(lián)立求出兩函數交點坐標:D點坐標為:(5,4.5),則AD=,當D為直角頂點時∵∠DAP1=∠BAO,∠BOA=∠ADP1,∴△ABO∽△AP1D,∴,,解得:AP1=11.15,則OP1=11.15﹣4=7.15,故P1點坐標為(7.15,0);∴點P的坐標為:P1(1,0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論