天津市濱海新區(qū)大港第八中學(xué)2023-2024學(xué)年高一數(shù)學(xué)第二學(xué)期期末綜合測試模擬試題含解析_第1頁
天津市濱海新區(qū)大港第八中學(xué)2023-2024學(xué)年高一數(shù)學(xué)第二學(xué)期期末綜合測試模擬試題含解析_第2頁
天津市濱海新區(qū)大港第八中學(xué)2023-2024學(xué)年高一數(shù)學(xué)第二學(xué)期期末綜合測試模擬試題含解析_第3頁
天津市濱海新區(qū)大港第八中學(xué)2023-2024學(xué)年高一數(shù)學(xué)第二學(xué)期期末綜合測試模擬試題含解析_第4頁
天津市濱海新區(qū)大港第八中學(xué)2023-2024學(xué)年高一數(shù)學(xué)第二學(xué)期期末綜合測試模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

天津市濱海新區(qū)大港第八中學(xué)2023-2024學(xué)年高一數(shù)學(xué)第二學(xué)期期末綜合測試模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.向量,,且,則等于()A. B. C.2 D.102.有一個(gè)內(nèi)角為120°的三角形的三邊長分別是m,m+1,m+2,則實(shí)數(shù)m的值為()A.1 B. C.2 D.3.設(shè)直線系.下列四個(gè)命題中不正確的是()A.存在一個(gè)圓與所有直線相交B.存在一個(gè)圓與所有直線不相交C.存在一個(gè)圓與所有直線相切D.M中的直線所能圍成的正三角形面積都相等4.若集合A={x|2≤x<4},?B={x|x>3}A.{x|3≤x<4} B.{x|3<x<4} C.{x|2≤x<3} D.{x|2≤x≤3}5.在中秋的促銷活動(dòng)中,某商場對9月14日9時(shí)到14時(shí)的銷售額進(jìn)行統(tǒng)計(jì),其頻率分布直方圖如圖所示,已知12時(shí)到14時(shí)的銷售額為萬元,則10時(shí)到11時(shí)的銷售額為()A.萬元 B.萬元 C.萬元 D.萬元6.已知點(diǎn),點(diǎn),點(diǎn)在圓上,則使得為直角三角形的點(diǎn)的個(gè)數(shù)為()A. B. C. D.7.如圖,正方體中,異面直線與所成角的正弦值等于A. B. C. D.18.在空間中,有三條不重合的直線,,,兩個(gè)不重合的平面,,下列判斷正確的是A.若∥,∥,則∥ B.若,,則∥C.若,∥,則 D.若,,∥,則∥9.已知點(diǎn),為坐標(biāo)原點(diǎn),分別在線段上運(yùn)動(dòng),則的周長的最小值為()A. B. C. D.10.等比數(shù)列中,,,則公比()A.1 B.2 C.3 D.4二、填空題:本大題共6小題,每小題5分,共30分。11.已知,則的取值范圍是_______;12.設(shè)數(shù)列的前n項(xiàng)和為,關(guān)于數(shù)列,有下列三個(gè)命題:(1)若既是等差數(shù)列又是等比數(shù)列,則;(2)若,則是等差數(shù)列:(3)若,則是等比數(shù)列這些命題中,真命題的序號是__________________________.13.已知等差數(shù)列的公差為2,若成等比數(shù)列,則________.14.觀察下列式子:你可歸納出的不等式是___________15._________________.16.設(shè)等比數(shù)列滿足a1+a3=10,a2+a4=5,則a1a2…an的最大值為.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.在數(shù)列中,,.(1)分別計(jì)算,,的值;(2)由(1)猜想出數(shù)列的通項(xiàng)公式,并用數(shù)學(xué)歸納法加以證明.18.設(shè)函數(shù)和都是定義在集合上的函數(shù),對于任意的,都有成立,稱函數(shù)與在上互為“互換函數(shù)”.(1)函數(shù)與在上互為“互換函數(shù)”,求集合;(2)若函數(shù)(且)與在集合上互為“互換函數(shù)”,求證:;(3)函數(shù)與在集合且上互為“互換函數(shù)”,當(dāng)時(shí),,且在上是偶函數(shù),求函數(shù)在集合上的解析式.19.如圖,在中,點(diǎn)在邊上,為的平分線,.(1)求;(2)若,,求.20.如圖,在直三棱柱中,,,是棱的中點(diǎn).(1)求證:;(2)求證:.21.某企業(yè)生產(chǎn)一種產(chǎn)品,質(zhì)量測試分為:指標(biāo)不小于為一等品;指標(biāo)不小于且小于為二等品;指標(biāo)小于為三等品。其中每件一等品可盈利元,每件二等品可盈利元,每件三等品虧損元?,F(xiàn)對學(xué)徒甲和正式工人乙生產(chǎn)的產(chǎn)品各件的檢測結(jié)果統(tǒng)計(jì)如下:測試指標(biāo)甲乙根據(jù)上表統(tǒng)計(jì)得到甲、乙生產(chǎn)產(chǎn)品等級的頻率分別估計(jì)為他們生產(chǎn)產(chǎn)品等級的概率。求:(1)乙生產(chǎn)一件產(chǎn)品,盈利不小于元的概率;(2)若甲、乙一天生產(chǎn)產(chǎn)品分別為件和件,估計(jì)甲、乙兩人一天共為企業(yè)創(chuàng)收多少元?(3)從甲測試指標(biāo)為與乙測試指標(biāo)為共件產(chǎn)品中選取件,求兩件產(chǎn)品的測試指標(biāo)差的絕對值大于的概率.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解析】

先由數(shù)量積為,得出,求出的坐標(biāo),利用模長的坐標(biāo)公式求解即可.【詳解】由題意可得,則則故選:B【點(diǎn)睛】本題主要考查了向量模的坐標(biāo)表示以及向量垂直的坐標(biāo)表示,屬于基礎(chǔ)題.2、B【解析】

由已知利用余弦定理可得,解方程可得的值.【詳解】在三角形中,由余弦定理得:,化簡可得:,解得或(舍).故選:B.【點(diǎn)睛】本題主要考查了余弦定理在解三角形中的應(yīng)用,考查了方程思想,屬于基礎(chǔ)題.3、D【解析】

對于含變量的直線問題可采用賦特殊值法進(jìn)行求解【詳解】因?yàn)樗渣c(diǎn)到中每條直線的距離即為圓的全體切線組成的集合,所以存在圓心在,半徑大于1的圓與中所有直線相交,A正確也存在圓心在,半徑小于1的圓與中所有直線均不相交,B正確也存在圓心在半徑等于1的圓與中所有直線相切,C正確故正確因?yàn)橹械闹本€與以為圓心,半徑為1的圓相切,所以中的直線所能圍成的正三角形面積不都相等,如圖

均為等邊三角形而面積不等,故錯(cuò)誤,答案選D.【點(diǎn)睛】本題從點(diǎn)到直線的距離關(guān)系出發(fā),考查了圓的切線與圓的位置關(guān)系,解決此類題型應(yīng)學(xué)會(huì)將條件進(jìn)行有效轉(zhuǎn)化.4、B【解析】

根據(jù)交集定義計(jì)算.【詳解】由題意A∩B={x|3<x<4}.故選B.【點(diǎn)睛】本題考查集合的交集運(yùn)算,屬于基礎(chǔ)題.5、C【解析】分析:先根據(jù)12時(shí)到14時(shí)的銷售額為萬元求出總的銷售額,再求10時(shí)到11時(shí)的銷售額.詳解:設(shè)總的銷售額為x,則.10時(shí)到11時(shí)的銷售額的頻率為1-0.1-0.4-0.25-0.1=0.15.所以10時(shí)到11時(shí)的銷售額為.故答案為C.點(diǎn)睛:(1)本題主要考查頻率分布直方圖求概率、頻數(shù)和總數(shù),意在考查學(xué)生對這些基礎(chǔ)知識的掌握水平.(2)在頻率分布直方圖中,所有小矩形的面積和為1,頻率=.6、D【解析】

分、、是直角三種情況討論,求出點(diǎn)的軌跡,將問題轉(zhuǎn)化為點(diǎn)的軌跡圖形與圓的公共點(diǎn)個(gè)數(shù)問題,即可得出正確選項(xiàng).【詳解】①若為直角,則,設(shè)點(diǎn),,,則,即,此時(shí),點(diǎn)的軌跡是以點(diǎn)為圓心,以為半徑的圓,圓與圓的圓心距為,,則圓與圓的相交,兩圓的公共點(diǎn)個(gè)數(shù)為;②若為直角,由于直線的斜率為,則直線的斜率為,直線的方程為,即,圓的圓心到直線的距離為,則直線與圓相交,直線與圓有個(gè)公共點(diǎn);③若為直角,則直線的方程為,圓的圓心到直線的距離為,直線與圓相離,直線與圓沒有公共點(diǎn).綜上所述,使得為直角三角形的點(diǎn)的個(gè)數(shù)為.故選:D.【點(diǎn)睛】本題考查符合條件的直角三角形的頂點(diǎn)個(gè)數(shù),解題的關(guān)鍵在于將問題轉(zhuǎn)化為直線與圓、圓與圓的公共點(diǎn)個(gè)數(shù)之和的問題,同時(shí)也考查了軌跡方程的求解,考查化歸與轉(zhuǎn)化思想以及分類討論思想的應(yīng)用,屬于難題.7、D【解析】

由線面垂直的判定定理得:,又,所以面,由線面垂直的性質(zhì)定理得:,即可求解.【詳解】解:連接,因?yàn)樗倪呅螢檎叫?,所以,又,所以面,所以,所以異面直線與所成角的正弦值等于1,故選D.【點(diǎn)睛】本題考查了線面垂直的判定定理及性質(zhì)定理,屬中檔題.8、C【解析】

根據(jù)空間中點(diǎn)、線、面的位置關(guān)系的判定與性質(zhì),逐項(xiàng)判定,即可求解,得到答案.【詳解】由題意,A中,若∥,∥,則與可能平行、相交或異面,故A錯(cuò)誤;B中,若,,則與c可能平行,也可能垂直,比如墻角,故B錯(cuò)誤;C中,若,∥,則,正確;D中,若,,∥,則與可能平行或異面,故D錯(cuò)誤;故選C.【點(diǎn)睛】本題主要考查了線面位置關(guān)系的判定與證明,其中解答中熟記空間中點(diǎn)、線、面的位置關(guān)系,以及線面位置關(guān)系的判定定理和性質(zhì)定理是解答的關(guān)鍵,著重考查了推理與論證能力,屬于中檔試題.9、C【解析】

分別求出設(shè)關(guān)于直線對稱的點(diǎn),關(guān)于對稱的點(diǎn),當(dāng)共線時(shí),的周長取得最小值,為,利用兩點(diǎn)間的距離公式,求出答案.【詳解】過兩點(diǎn)的直線方程為設(shè)關(guān)于直線對稱的點(diǎn),則,解得即,同理可求關(guān)于對稱的點(diǎn),當(dāng)共線時(shí)的周長取得最小值為.故選C.【點(diǎn)睛】本題主要考查了點(diǎn)關(guān)于直線的對稱性的簡單應(yīng)用,試題的技巧性較強(qiáng),屬于中檔題.10、B【解析】

將與用首項(xiàng)和公比表示出來,解方程組即可.【詳解】因?yàn)?,且,故:,且,解得:,即,故選:B.【點(diǎn)睛】本題考查求解等比數(shù)列的基本量,屬基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

本題首先可以根據(jù)向量的運(yùn)算得出,然后等式兩邊同時(shí)平方并化簡,得出,最后根據(jù)即可得出的取值范圍.【詳解】設(shè)向量與向量的夾角為,因?yàn)椋?,即,因?yàn)?,所以,即,所以的取值范圍是.【點(diǎn)睛】本題考查向量的運(yùn)算以及向量的數(shù)量積的相關(guān)性質(zhì),向量的數(shù)量積公式,考查計(jì)算能力,是簡單題.12、(1)、(2)、(3)【解析】

利用等差數(shù)列和等比數(shù)列的定義,以及等差數(shù)列和等比數(shù)列的前項(xiàng)和形式,逐一判斷即可.【詳解】既是等差數(shù)列又是等比數(shù)列的數(shù)列是非零常數(shù)列,故(1)正確.等差數(shù)列的前項(xiàng)和是二次函數(shù)形式,且不含常數(shù),故(2)正確.等比數(shù)列的前項(xiàng)和是常數(shù)加上常數(shù)乘以的形式,故(3)正確.故答案為:(1),(2),(3)【點(diǎn)睛】本題主要考查等差數(shù)列和等比數(shù)列的定義,同時(shí)考查了等差數(shù)列和等比數(shù)列的前項(xiàng)和,屬于簡單題.13、【解析】

利用等差數(shù)列{an}的公差為1,a1,a3,a4成等比數(shù)列,求出a1,即可求出a1.【詳解】∵等差數(shù)列{an}的公差為1,a1,a3,a4成等比數(shù)列,

∴(a1+4)1=a1(a1+2),

∴a1=-8,

∴a1=-2.

故答案為-2..【點(diǎn)睛】本題考查等比數(shù)列的性質(zhì),考查等差數(shù)列的通項(xiàng),考查學(xué)生的計(jì)算能力,屬基礎(chǔ)題..14、【解析】

觀察三個(gè)已知式子的左邊和右邊,第1個(gè)不等式左邊可改寫成;第2個(gè)不等式左邊的可改寫成,右邊的可改寫成;第3個(gè)不等式的左邊可改寫成;據(jù)此可發(fā)現(xiàn)第個(gè)不等式的規(guī)律.【詳解】觀察三個(gè)已知式子的左邊和右邊,第1個(gè)式子可改寫為:,第2個(gè)式子可改寫為:,第3個(gè)式子可改寫為:,所以可歸納出第個(gè)不等式是:.故答案為:.【點(diǎn)睛】本題考查歸納推理,考查學(xué)生分析、解決問題的能力,屬于基礎(chǔ)題.15、3【解析】

分式上下為的二次多項(xiàng)式,故上下同除以進(jìn)行分析.【詳解】由題,,又,故.

故答案為:3.【點(diǎn)睛】本題考查了分式型多項(xiàng)式的極限問題,注意:當(dāng)時(shí),16、【解析】試題分析:設(shè)等比數(shù)列的公比為,由得,,解得.所以,于是當(dāng)或時(shí),取得最大值.考點(diǎn):等比數(shù)列及其應(yīng)用三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),;

(2),證明見解析【解析】

(1)分別令即可運(yùn)算得出,,的值;(2)由(1)可猜想出,當(dāng)時(shí)成立,再假設(shè)當(dāng)時(shí),成立,再利用推導(dǎo)出即可.【詳解】(1)令有;

令有;

令有所以,,(2)由(1)可得,,,,故可猜想.證明:當(dāng)時(shí),成立;假設(shè)當(dāng)時(shí),成立,且即當(dāng)時(shí),,即,化簡得,,即也滿足,當(dāng)時(shí)成立,故對于任意的,有,證畢.所以.【點(diǎn)睛】本題主要考查了數(shù)學(xué)歸納法的運(yùn)用,其中步驟為:(1)證明當(dāng)取第一個(gè)值時(shí)命題成立.對于一般數(shù)列取值為0或1;(2)假設(shè)當(dāng)()且為自然數(shù))時(shí)命題成立,證明當(dāng)時(shí)命題也成立.

綜合(1)(2),對一切自然數(shù),命題都成立.18、(1)(2)見解析(3),【解析】

(1)利用列方程,并用二倍角公式進(jìn)行化簡,求得或,進(jìn)而求得集合.(2)由,得(且),化簡后根據(jù)的取值范圍,求得的取值范圍.(3)首先根據(jù)為偶函數(shù),求得當(dāng)時(shí),的解析式,從而求得當(dāng)時(shí),的解析式.依題意“當(dāng),恒成立”,化簡得到,根據(jù)函數(shù)解析式的求法,求得時(shí),以及,進(jìn)而求得函數(shù)在集合上的解析式.【詳解】(1)由得化簡得,,所以或.由解得或,,即或,.又由解得,.所以集合,或,即集合.(2)證明:由,得(且).變形得,所以.因?yàn)?,則,所以.(3)因?yàn)楹瘮?shù)在上是偶函數(shù),則.當(dāng),則,所以.所以,因此當(dāng)時(shí),.由于與函數(shù)在集合上“互換函數(shù)”,所以當(dāng),恒成立.即對于任意的恒成立.即.于是有,,.上述等式相加得,即.當(dāng)()時(shí),,所以.而,,所以當(dāng)時(shí),,【點(diǎn)睛】本小題主要考查新定義函數(shù)的理解和運(yùn)用,考查二倍角公式和特殊角的三角函數(shù)值,考查指數(shù)運(yùn)算和指數(shù)函數(shù)的值域,考查根據(jù)函數(shù)的奇偶性求函數(shù)的解析式,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,考查分析、思考與解決問題的能力,屬于難題.19、(1)(2)【解析】

(1)令,正弦定理,得,代入面積公式計(jì)算得到答案.(2)由題意得到,化簡得到,,再利用面積公式得到答案.【詳解】(1)因?yàn)榈钠椒志€,令在中,,由正弦定理,得所以.(2)因?yàn)椋?,又?得,,因?yàn)椋运?【點(diǎn)睛】本題考查了面積的計(jì)算,意在考查學(xué)生靈活利用正余弦定理和面積公式解決問題的能力.20、(1)見詳解;(2)見詳解.【解析】

(1)連接AC1,設(shè)AC1∩A1C=O,連接OD,可求O為AC1的中點(diǎn),D是棱AB的中點(diǎn),利用中位線的性質(zhì)可證OD∥BC1,根據(jù)線面平行的判斷定理即可證明BC1∥平面A1CD.(2)由(1)可證平行四邊形ACC1A1是菱形,由其性質(zhì)可得AC1⊥A1C,利用線面垂直的性質(zhì)可證AB⊥AA1,根據(jù)AB⊥AC,利用線面垂直的判定定理可證AB⊥平面ACC1A1,利用線面垂直的性質(zhì)可證AB⊥A1C,又AC1⊥A1C,根據(jù)線面垂直的判定定理可證A1C⊥平面ABC1,利用線面垂直的性質(zhì)即可證明BC1⊥A1C.【詳解】(1)連接AC1,設(shè)AC1∩A1C=O,連接OD,在直三棱柱ABC﹣A1B1C1中,側(cè)面ACC1A1是平行四邊形,所以:O為AC1的中點(diǎn),又因?yàn)椋篋是棱AB的中點(diǎn),所以:OD∥BC1,又因?yàn)椋築C1?平面A1CD,OD?平面A1CD,所以:BC1∥平面A1CD.(2)由(1)可知:側(cè)面ACC1A1是平行四邊形,因?yàn)椋篈C=AA1,所以:平行四邊形ACC1A1是菱形,所以:AC1⊥A1C,在直三棱柱ABC﹣A1B1C1中,AA1⊥平面ABC,因?yàn)椋篈B?平面ABC,所以:AB⊥AA1,又因?yàn)椋篈B⊥AC,AC∩AA1=A,AC?平面ACC1A1,AA1?平面ACC1A1,所以:AB⊥平面ACC1A1,因?yàn)椋篈1C?平面ACC1A1,所以:AB⊥A1C,又因?yàn)椋篈C1⊥A1C,AB∩AC1=A,AB?平面ABC1,AC1?平面ABC1,所以:A1C⊥平面ABC1,因?yàn)椋築C1?平面ABC1,所以:BC1⊥A1C.【點(diǎn)睛】本題主要考查了線面平行的判定,線面垂直的性質(zhì),線面垂直的判定,考查了空間想象能力和推理論證能力

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論