版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
遼寧葫蘆島協(xié)作校2024年高一下數(shù)學期末監(jiān)測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.平面直角坐標系xOy中,角的頂點在原點,始邊在x軸非負半軸,終邊與單位圓交于點,將其終邊繞O點逆時針旋轉后與單位園交于點B,則B的橫坐標為()A. B. C. D.2.如圖,在圓內隨機撒一把豆子,統(tǒng)計落在其內接正方形中的豆子數(shù)目,若豆子總數(shù)為n,落在正方形內的豆子數(shù)為m,則圓周率π的估算值是()A.nmB.2nmC.3n3.在中,已知角的對邊分別為,若,,,,且,則的最小角的正切值為()A. B. C. D.4.已知扇形圓心角為,面積為,則扇形的弧長等于()A. B. C. D.5.設是周期為4的奇函數(shù),當時,,則()A. B. C. D.6.已知某幾何體的三視圖是如圖所示的三個直角三角形,則該幾何體的外接球的表面積為()A.17π B.34π C.51π D.68π7.已知,是兩個不同的平面,是兩條不同的直線,下列命題中錯誤的是()A.若∥,,,則B.若∥,,,則C.若,,,則⊥D.若⊥,,,,則8.如圖,平面ABCD⊥平面EDCF,且四邊形ABCD和四邊形EDCF都是正方形,則異面直線BD與CE所成的角為()A. B. C. D.9.在中,若,,,則等于()A.3 B.4 C.5 D.610.在正方體中,為棱的中點,則異面直線與所成角的余弦值為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知向量,.若向量與垂直,則________.12.已知內接于拋物線,其中O為原點,若此內接三角形的垂心恰為拋物線的焦點,則的外接圓方程為_____.13.數(shù)列的前項和為,若數(shù)列的各項按如下規(guī)律排列:,,,,,,,,,,…,,,…,,…有如下運算和結論:①;②數(shù)列,,,,…是等比數(shù)列;③數(shù)列,,,,…的前項和為;④若存在正整數(shù),使,,則.其中正確的結論是_____.(將你認為正確的結論序號都填上)14.化簡:________15.一個圓柱和一個圓錐的底面直徑和它們的高都與某一個球的直徑相等,這時圓柱、圓錐、球的體積之比為.16.設,,為三條不同的直線,,為兩個不同的平面,下列命題中正確的是______.(1)若,,,則;(2)若,,,則;(3)若,,,,則;(4)若,,,則.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.(1)計算:;(2)化簡:.18.某校為了了解甲、乙兩班的數(shù)學學習情況,從兩班各抽出10名學生進行數(shù)學水平測試,成績如下(單位:分):甲班:82848589798091897974乙班:90768681848786828583(1)求兩個樣本的平均數(shù);(2)求兩個樣本的方差和標準差;(3)試分析比較兩個班的學習情況.19.三角比內容豐富,公式很多,若仔細觀察、大膽猜想、科學求證,你也能發(fā)現(xiàn)其中的一些奧秘.請你完成以下問題:(1)計算:,,;(2)根據(jù)(1)的計算結果,請你猜出一個一般的結論用數(shù)學式子加以表達,并證明你的結論,寫出推理過程.20.某校舉行漢字聽寫比賽,為了了解本次比賽成績情況,從得分不低于50分的試卷中隨機抽取100名學生的成績(得分均為整數(shù),滿分100分)進行統(tǒng)計,請根據(jù)頻率分布表中所提供的數(shù)據(jù),解答下列問題:組號分組頻數(shù)頻率第1組[50,60)50.05第2組[60,70)0.35第3組[70,80)30第4組[80,90)200.20第5組[90,100]100.10合計1001.00(Ⅰ)求的值;(Ⅱ)若從成績較好的第3、4、5組中按分層抽樣的方法抽取6人參加市漢字聽寫比賽,并從中選出2人做種子選手,求2人中至少有1人是第4組的概率.21.設一元二次不等式的解集為.(Ⅰ)當時,求;(Ⅱ)當時,求的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
,B的橫坐標為,計算得到答案.【詳解】有題意知:B的橫坐標為:故答案選B【點睛】本題考查了三角函數(shù)的計算,意在考查學生的計算能力.2、B【解析】試題分析:設正方形的邊長為2.則圓的半徑為2,根據(jù)幾何概型的概率公式可以得到mn=4考點:幾何概型.【方法點睛】本題題主要考查“體積型”的幾何概型,屬于中檔題.解決幾何概型問題常見類型有:長度型、角度型、面積型、體積型,求與體積有關的幾何概型問題關鍵是計算問題題的總體積(總空間)以及事件的體積(事件空間);幾何概型問題還有以下幾點容易造成失分,在備考時要高度關注:(1)不能正確判斷事件是古典概型還是幾何概型導致錯誤;(2)基本事件對應的區(qū)域測度把握不準導致錯誤;(3)利用幾何概型的概率公式時,忽視驗證事件是否等可能性導致錯誤.3、D【解析】
根據(jù)大角對大邊判斷最小角為,利用正弦定理得到,代入余弦定理計算得到,最后得到.【詳解】根據(jù)大角對大邊判斷最小角為根據(jù)正弦定理知:根據(jù)余弦定理:化簡得:故答案選D【點睛】本題考查了正弦定理,余弦定理,意在考查學生的計算能力.4、C【解析】
根據(jù)扇形面積公式得到半徑,再計算扇形弧長.【詳解】扇形弧長故答案選C【點睛】本題考查了扇形的面積和弧長公式,解出扇形半徑是解題的關鍵,意在考查學生的計算能力.5、A【解析】
.故選A.6、B【解析】
由三視圖還原出原幾何體,得幾何體的結構(特別是垂直關系),從而確定其外接球球心位置,得球半徑.【詳解】由三視圖知原幾何體是三棱錐,如圖,平面,平面.由這兩個線面垂直,得,因此的中點到四頂點的距離相等,即為外接球球心.由三視圖得,,∴.故選:B.【點睛】本題考查三棱錐外接球表面積,考查三視圖.解題關鍵是由三視圖還原出原幾何體,確定幾何體的結構,找到外接球球心.7、A【解析】
根據(jù)平面和直線關系,依次判斷每個選項得到答案.【詳解】A.若,,,則如圖所示情況,兩直線為異面直線,錯誤其它選項正確.故答案選A【點睛】本題考查了直線平面的關系,找出反例是解題的關鍵.8、C【解析】
以D為原點,DA為x軸,DC為y軸,DE為z軸,建立空間直角坐標系,利用向量法能求出異面直線BD與CE所成的角.【詳解】∵平面ABCD⊥平面EDCF,且四邊形ABCD和四邊形EDCF都是正方形,∴以D為原點,DA為x軸,DC為y軸,DE為z軸,建立空間直角坐標系,設AB=1,則B(1,1,0),D(0,0,0),C(0,1,0),E(0,0,1),(﹣1,﹣1,0),(0,﹣1,1),設異面直線BD與CE所成的角為θ,則cosθ,∴θ.∴異面直線BD與CE所成的角為.故選:C.【點評】本題考查異面直線所成角的求法,考查空間中線線、線面、面面間的位置關系等基礎知識,考查運算求解能力,是基礎題.9、D【解析】
直接運用正弦定理求解即可.【詳解】由正弦定理可知中:,故本題選D.【點睛】本題考查了正弦定理的應用,考查了數(shù)學運算能力.10、D【解析】
利用,得出異面直線與所成的角為,然后在中利用銳角三角函數(shù)求出.【詳解】如下圖所示,設正方體的棱長為,四邊形為正方形,所以,,所以,異面直線與所成的角為,在正方體中,平面,平面,,,,,在中,,,因此,異面直線與所成角的余弦值為,故選D.【點睛】本題考查異面直線所成角的計算,一般利用平移直線,選擇合適的三角形,利用銳角三角函數(shù)或余弦定理求解,考查推理能力與計算能力,屬于中等題.二、填空題:本大題共6小題,每小題5分,共30分。11、7【解析】
由與垂直,則數(shù)量積為0,求出對應的坐標,計算即可.【詳解】,,,又與垂直,故,解得,解得.故答案為:7.【點睛】本題考查通過向量數(shù)量積求參數(shù)的值.12、【解析】
由拋物線的對稱性知A、B關于x軸對稱,設出它們的坐標,利用三角形的垂心的性質,結合斜率之積等于﹣1即可求得直線MN的方程,即可求出點C的坐標,問題得以解決.【詳解】∵拋物線關于x軸對稱,內接三角形的垂心恰為拋物線的焦點,三邊上的高過焦點,∴另兩個頂點A,B關于x軸對稱,即△ABO是等腰三角形,作AO的中垂線MN,交x軸與C點,而Ox是AB的中垂線,故C點即為△ABO的外接圓的圓心,OC是外接圓的半徑,設A(x1,2),B(x1,﹣2),連接BF,則BF⊥AO,∵kBF,kAO,∴kBF?kAO=?1,整理,得x1(x1﹣5)=1,則x1=5,(x1=1不合題意,舍去),∵AO的中點為(,),且MN∥BF,∴直線MN的方程為y(x),當x1=5代入得2x+4y﹣91,∵C是MN與x軸的交點,∴C(,1),而△ABO的外接圓的半徑OC,于是得到三角形外接圓方程為(x)2+y2=()2,△OAB的外接圓方程為:x2﹣9x+y2=1,故答案為x2﹣9x+y2=1.【點睛】本題考查拋物線的簡單性質,考查了兩直線垂直與斜率的關系,是中檔題13、①③④【解析】
根據(jù)題中所給的條件,將數(shù)列的項逐個寫出,可以求得,將數(shù)列的各項求出,可以發(fā)現(xiàn)其為等差數(shù)列,故不是等比數(shù)列,利用求和公式求得結果,結合條件,去挖掘條件,最后得到正確的結果.【詳解】對于①,前24項構成的數(shù)列是,所以,故①正確;對于②,數(shù)列是,可知其為等差數(shù)列,不是等比數(shù)列,故②不正確;對于③,由上邊結論可知是以為首項,以為公比的等比數(shù)列,所以有,故③正確;對于④,由③知,即,解得,且,故④正確;故答案是①③④.【點睛】該題考查的是有關數(shù)列的性質以及對應量的運算,解題的思想是觀察數(shù)列的通項公式,理解項與和的關系,認真分析,仔細求解,從而求得結果.14、【解析】
根據(jù)三角函數(shù)的誘導公式,準確運算,即可求解.【詳解】由題意,可得.故答案為:.【點睛】本題主要考查了三角函數(shù)的誘導公式的化簡、求值問題,其中解答中熟記三角函數(shù)的誘導公式,準確運算是解答的關鍵,著重考查了推理與計算能力,屬于基礎題.15、【解析】
設球的半徑為r,則,,,所以,故答案為.考點:圓柱,圓錐,球的體積公式.點評:圓柱,圓錐,球的體積公式分別為.16、(1)【解析】
利用線線平行的傳遞性、線面垂直的判定定理判定.【詳解】(1),,,則,正確(2)若,,,則,錯誤(3)若,則不成立,錯誤(4)若,,,則,錯誤【點睛】本題主要考查線面垂直的判定定理判定,考查了空間想象能力,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)-2(2)【解析】
(1)利用特殊角的三角函數(shù)值求得表達式的值.(2)利用誘導公式化簡所求表達式.【詳解】(1).(2).【點睛】本小題主要考查特殊角的三角函數(shù)值,考查誘導公式,屬于基礎題.18、(1),;(2),,;(3)乙班的總體學習情況比甲班好【解析】試題分析:每組樣本數(shù)據(jù)有10個,求樣本的平均數(shù)利用平均數(shù)公式,10個數(shù)的平均數(shù)等于這10個數(shù)的和除以10;比較平均分的大小可以看出兩個班學生平均水平的高低,求樣本的方差只需使用方差公式,求這10個數(shù)與平均數(shù)的差的平方方和再除以10;比較兩組數(shù)據(jù)方差的大小就可得出兩組數(shù)據(jù)的標準差的大小,標準差較小者成績較穩(wěn)定。試題解析:(1)=×(82+1+85+89+79+80+91+89+79+74)=83.2,=×(90+76+86+81+1+87+86+82+85+83)=1.(2)=×[(82-83.2)2+(1-83.2)2+(85-83.2)2+(89-83.2)2+(79-83.2)2+(80-83.2)2+(91-83.2)2+(89-83.2)2+(79-83.2)2+(74-83.2)2]=26.36,=[(90-1)2+(76-1)2+(86-1)2+(81-1)2+(1-1)2+(87-1)2+(86-1)2+(82-1)2+(85-1)2+(83-1)2]=13.2,則s甲=≈5.13,s乙=≈3.2.(3)由于,則甲班比乙班平均水平低.由于,則甲班沒有乙班穩(wěn)定.所以乙班的總體學習情況比甲班好【點睛】怎樣求樣本的平均數(shù),n個數(shù)的平均數(shù)等于這n個數(shù)的和除以n;比較平均數(shù)的大小可以看出兩個樣本平均水平的高低,怎樣求樣本的方差,就是求這n個數(shù)與平均數(shù)的差的平方方和再除以n;比較兩組數(shù)據(jù)方差的大小就可得出兩組數(shù)據(jù)的標準差的大小,標準差較小者成績較穩(wěn)定。19、(1),,;(2).【解析】
(1)依據(jù)誘導公式以及兩角和的正弦公式即可計算出;(2)觀察(1)中角度的關系,合情推理出一般結論,然后利用兩角和的正弦公式即可證明.【詳解】(1)同理可得,,.(2)由(1)知,可以猜出:.證明如下:.【點睛】本題主要考查學生合情推理論證能力,以及誘導公式和兩角和的正弦公式的應用,意在考查學生的數(shù)學抽象素養(yǎng)和邏輯推理能力.20、(1)35,0.30;(2).【解析】試題分析:(Ⅰ)直接利用頻率和等于1求出b,用樣本容量乘以頻率求a的值;(Ⅱ)由分層抽樣方法求出所抽取的6人中第三、第四、第五組的學生數(shù),利用列舉法寫出從中任意抽取2人的所有方法種數(shù),查出2人至少1人來自第四組的事件個數(shù),然后利用古典概型的概率計算公式求解.試題解析:(Ⅰ)a=100-5-30-20-10=35,b=1-0.05-0.35-0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 玩具租賃合同三篇
- 二零二五年度綠色能源個人承包工程合同范本2篇
- 二零二五年度林業(yè)碳匯項目樹木砍伐與碳交易合同樣本3篇
- 二零二五年度房地產(chǎn)項目合作開發(fā)合同(含配套設施)2篇
- 二零二五年度綠色節(jié)能型個人住宅裝修合同2篇
- 二零二五年度耐腐蝕水泵購銷與運輸服務合同3篇
- 教育行業(yè)教師專業(yè)發(fā)展總結
- 二零二五年度農(nóng)業(yè)灌溉水暖電設施分包合同范本3篇
- 家電行業(yè)營銷總結創(chuàng)新科技引領生活潮流
- 2025版私人土地租賃合同(含租賃合同變更)3篇
- 合同簽訂執(zhí)行風險管控培訓
- DB43-T 3022-2024黃柏栽培技術規(guī)程
- 成人失禁相關性皮炎的預防與護理
- 人教版(2024新版)七年級上冊數(shù)學第六章《幾何圖形初步》測試卷(含答案)
- 九宮數(shù)獨200題(附答案全)
- JT-T-496-2018公路地下通信管道高密度聚乙烯硅芯塑料管
- 食材配送投標方案技術標
- 再見深海合唱簡譜【珠海童年樹合唱團】
- 《聚焦客戶創(chuàng)造價值》課件
- PTW-UNIDOS-E-放射劑量儀中文說明書
- 保險學(第五版)課件全套 魏華林 第0-18章 緒論、風險與保險- 保險市場監(jiān)管、附章:社會保險
評論
0/150
提交評論