




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
McDaniel&Gates–MarketingResearch,12thEdition Instructor’sManual
Copyright?2021JohnWiley&Sons,Inc. 14-
CHAPTER14
MorePowerfulStatisticalMethods
LEARNINGOBJECTIVES
1.Learnthebivariateanalysisofassociation.
2.Understandbivariateregressionanalysis.
3.Definemultivariatedataanalysis.
4.Gaininsightsintomultivariatesoftware.
5.Describemultiplediscriminantanalysis.
6.Understandclusteranalysis.
7.Understandfactoranalysis.
KEYTERMS
Bivariateregressionanalysis
Causation
Classificationmatrix
Clusteranalysis
Coefficientofdetermination
Collinearity
Conjointanalysis
Correlationanalysis
Dependentvariable
Discriminantcoefficient
Discriminantscore
Dummyvariables
Errorsumofsquares
Factor
Factoranalysis
Factorloading
Independentvariable
K-meansclusteranalysis
Metricscale
Multiplediscriminantanalysis
Multipleregressionanalysis
Multivariateanalysis
Neuralnetworks
Nominalorcategorical
Pearson’sproduct-momentcorrelation
Regressioncoefficients
Scalingofcoefficients
Scatterdiagram
Sumofsquaresduetoregression
Utilities
CHAPTERSUMMARY
Thischapterexaminestheelementsofbivariateanalysisofassociation.Bivariatetechniquesarestatisticalmethodsofanalyzingtherelationshipbetweentwovariables,independentvariablesanddependentvariables.Thebivariateregressionispresented.Ifthedataappearstobelinearwhenplottedonascatterplot,regressioncanbeused.Anexampleisthenusedtoexplorethebasicstepsinbivariateregression.
CorrelationAnalysisisalsodiscussed.Correlationisthemeasurementofthedegreetowhichchangesinonevariableareassociatedwithchangesinanother.ThePearson’sproductmomentcorrelationisusedifmetricdataareinvolved.
Thischapteralsoexaminesseveralmethodsofmultivariatedataanalysis.Thesetechniquesarecomplex,requiringcomputerstodothemathematics.Multipleregressionanalysisistheappropriatemultivariatetechniqueiftheresearcher’sgoalistoexaminetotherelationshipbetweentwoormoremetricpredictorvariablesandonmetricdependentvariables.Discriminantanalysisissimilartomultipleregressionanalysis,exceptthedependentvariableisnominalorcategoricalinnature.ClusterAnalysisisusedtoidentifyobjectsorpeoplethataresimilarinregardtocertainvariablesormeasurements.Factoranalysisisusedtosimplifydataandtosummarizemeasuresintoconcepts.Conjointanalysishelpstodeterminewhatfeaturesanewproductorserviceshouldhaveandhowitshouldbepriced.
QUESTIONSFORREVIEWANDCRITICALTHINKING
Giveexamplesofthreemarketingproblemsforwhichregressionanalysiswouldbeappropriate.
Studentanswersmayvary.Giventhetypeofanalysis,anydescriptionwouldnotethatthevariableshadtobeatleastintervalscale(metric)forPearson’sCorrelation,andmostlikelythecaseinbivariateregression,exceptintheeventoftheuseofdummyvariables.Also,thestudentwouldneedtobeclearaboutwhichvariablewasbeingpredicted(dependentvariable)andwhatvariableorvariables(independentvariables)werebeingusedtomaketheprediction.
Whatpurposedoesascatterdiagramserve?
Ascatterdiagramisusedtoplotdataobservationstodetermineiftherelationshipappearstobelinear,curvilinear,ornon-existent.Thisallowstheresearchertodeterminewhetherusinglinearmeasuresofassociation(e.g.Pearson’sproduct-momentcorrelation)wouldbeappropriate.
Explainthemeaningofthecoefficientofdetermination.Whatdoesthiscoefficienttelltheresearcheraboutthenatureoftherelationshipbetweenthedependentandindependentvariables?
Thecoefficientofdeterminationtellsthemarketingresearcherhowmuchvariationinthedependentvariablecanbeexplainedbyvariationintheindependentvariable.Itisameasureofthestrengthoftherelationship.Ifthecoefficientofdeterminationislow,theindependentvariabledoesnothavesignificantexplanatorypowerinpredictingchangesinthedependentvariable.
Distinguishbetweenmultiplediscriminantanalysisandclusteranalysis.Giveexamplesofsituationsinwhicheachmightbeused.
Multiplediscriminantanalysisanalyzestherelationshipsbetweenasetofmetricindependentvariablesandanominalorcategoricaldependentvariable.Itcantestahypothesizedrelationshipanditdescribeshowtheindependentvariablesdiscriminatebetweenthegroupsofthedependentvariable.Clusteranalysisisastatisticaltoolusedforclusteringpeopleorobjectsbasedonaparticularcriteriaorvariableinthestudy.Forexample,wemighthave15differentmeasuresofbenefitsandwanttoclusterpeopleintobenefitgroupsformarketsegmentation.Thesameconceptcouldbeusedforpersonalvalues,attitudestowardratinghealthyalternatives,orthetypesofrestaurantsfrequented.Multiplediscriminantanalysiscouldbeusedforsegmentingusersfromnonusers,lightfromheavyusers,patronsfromnon-patrons,andahostofotherdependentcategoricalvariables.Anumberofindependentvariablesetssuchasbenefits,attributes,knowledge,andpreferencescouldbeusedtopredictgroupmembership.
Whatpurposedoesmultipleregressionanalysisserve?Giveanexampleofhowitmightbeusedinmarketingresearch.Howisthestrengthofmultipleregressionmeasuresofassociationdetermined?
Multipleregressionanalysisisusedtoexaminetherelationshipbetweentwoormoremetricpredictorvariablesandonemetricdependentvariable.Itcanalsobeusedtogeneratepredictionsforthedependentvariable,givenacombinationofvaluesfortheindependentvariables.Multipleregressionanalysishasmanyapplicationsinmarketingresearch.Onegeneralapplicationrelatestodeterminingtheeffectsofvariousmarketingvariablesonsalesormarketshare.TheCoefficientofDeterminationorR2providesameasureofthepercentageofvariationinthedependentvariableexplainedbyvariationintheindependentvariable(s).
Whatisadummyvariable?Giveanexampleusingadummyvariable.
Theterm“dummyvariable”describesthecodingofnominallyscaledindependentvariablessothattheycanbeusedinregressionanalysis.Anexampleofadummyvariableforameasureoflocationofbirthwouldbe
0=bornintheUnitedStates,1=bornoutsidetheUnitedStates
Itiscriticalthatthestudentunderstandsthatdummyvariablesmustbecodedas0/1andwhenmorethantwocategoriesareused,thatmorethanonedummyvariablemustbeused.Forexample,tocodefreshman,sophomore,junior,orseniorwouldrequirethree(n-1)dummyvariables.
Asalesmanagerexaminedagedata,educationlevel,apersonalityfactorthatindicatedlevelofintrovertedness/extrovertedness,andlevelofsalesattainedbythecompany’s120-personsalesforce.Thetechniqueusedwasmultipleregressionanalysis.Afteranalyzingthedata,thesalesmanagersaid,“Itisapparenttomethatthehigherthelevelofeducationandthegreaterthedegreeofextrovertednessasalespersonhas,thehigherwillbeanindividual’slevelofsales.Inotherwords,agoodeducationandbeingextrovertedcauseapersontosellmore.”Wouldyouagreeordisagreewiththesalesmanager’sconclusions?Why?
Themanagershouldconsiderwhetherageandeducationarecorrelated(collinearity),asoldersalespersonsmayhavegreatereducationandthusthe“educationeffect”mayreallybean“age/experienceeffect.”Itisalsoplausiblethattheextrovertedsalespersonsarealsoolder,asgreaterexperiencegenerallyleadstogreaterconfidenceandperformance.Anotherimportantissueiswhetherthemanagerhascorrectlyspecifiedtheregressionmodel.Itislikelythatmanyotherfactorsthathaveasignificantimpactonsalespersonperformancehavenotbeenincludedinthemodel.Anyofthesecouldbeconfoundedwiththeincludedvariables.Perhapsmostimportantly,themanagershouldkeepinmindthatcausationcanneverbeprovenwithstatisticalevidencealone.
Thefactorsproducedandtheresultsofthefactorloadingsfromfactoranalysisaremathematicalconstructs.Itisthetaskoftheresearchertomakesenseoutofthesefactors.ThefollowingtablelistsfourfactorsproducedfromastudyofcableTVviewers.Whatlabelwouldyouputoneachofthesefourfactors?Why?
Factor1Varietyofprogrammingorrepetitiveprogramming.Allofthequestionsdealwiththemoviechannelsplayingthesamemoviesoverandoveragain.
Factor2Emotionalprogrammingor“Tear-jerking”programming.Alloftheitemsareaboutprogrammingthatelicitsanemotionalresponse.
Factor3Religiousprogramming.Thesequestionsmeasuretheviewers’opinionsofreligiousprograms.
Factor4Homeentertainment.Theitemsmeasuretheviewers’preferencesforviewingmoviesathome.
ThefollowingtableisadiscriminantanalysisthatexaminesresponsestovariousattitudinalquestionsfromcableTVusers,formercableTVusers,andpeoplewhohaveneverusedcableTV.Lookingatthevariousdiscriminantweights,whatcanyousayabouteachofthethreegroups?
For“users,”themostdiscriminatingvariablesareA19(easygoingonrepairs)andA18(norepairservice).For“formers,”themostdiscriminatingvariablesareA4andA18(burnedoutonrepeatsandnorepairservice,respectively).Forthe“nevers,”themostdiscriminatingvariablesareA7andA19(breakdowncomplainerandeasygoingonrepairs,respectively).Theseresultssuggestthatconcernsabout,orreactionsto,servicefailure(breakdowns/repairs)arethemostpredictiveofwhetheraconsumerisauser,aformeruser,orneverauser.
Thefollowingtableshowsregressioncoefficientsfortwodependentvariables.ThefirstdependentvariableiswillingnesstospendmoneyforcableTV.Theindependentvariablesareresponsestoattitudinalstatements.TheseconddependentvariableisstateddesirenevertoallowcableTVintheirhomes.Byexaminingtheregressioncoefficients,whatcanyousayaboutpersonswillingtospendmoneyforcableTVandthosewhowillnotallowcableTVintheirhomes?
Thosewhoarewillingtospendmoneyforcabletelevisionenjoywatchingmoviesandcomedy,andtheyarelikelytodosolateatnight.Theymaybesomewhatlonely(“forlorn”)andmayhaveagreaterneedforexternalsourcesof“stimulation,”suchasmightbeofferedbytelevisionprogramming.Theyarealsodissatisfiedwiththeservicelevelandwishthecablestationsofferedmorevariety.Thosewhowillnotallowcableintheirhomesdonotenjoywatchingsportingevents,objecttosexontelevision,anddonotfeelaneedformanychoicesintheirtelevisionprogramming.
Explainwhatpredictiveanalyticsencompasses.Provideexamplesofsomemarketingproblemstowhichyoumightapplypredictiveanalytics.
Predictiveanalyticsdescribesawidearrayoftoolsandtechniquesthatareusedtoextractandanalyzeinformationfromdatasets.Exampleswillvarybutmightincludesuchthingsas…
Predictingthelikelihoodofpurchasingbabyfurniture
Predictingwhomightvoteforaparticularcandidateorvoterinitiative
Predictingthepotentialmarketshareforanewproduct
Describethestepsinthepredictiveanalyticsprocess.
AcquiringaDataSet.Beforeapplyingpredictiveanalytics,anorganizationmustassembleatargetdatasetrelevanttotheproblemofinterest.
Pre-processing.Onceassembled,thedatasetmustbecleanedinaprocesswhereobservationsthatcontainexcessivenoise,errorsandmissingdataareeditedorexcluded.
Modeling.Thisistheprocessofbuildingarelationshipbetweenthedataandwhatistobepredicted.Techniquesincludeclustering,classification,andestimatingandpredicting.
ValidatingResults.Afinalstepofknowledgediscoveryfromthetargetdataandmodelingistoattempttoverifythepatternsproducedbythepredictivemodelingalgorithmsinawiderdataset.
ApplyingtheResults.Oncethemodelsandcalculationsareinplaceandhavebeenvalidated,theyareappliedtoexistingandfuturecustomerrecordstoimprovetheefficiencyandeffectivenessofmarketingefforts.
WORKINGTHENET
Takealookat.Reviewthediscussionofwhyanalyticsareimportantandusefulinthesportsworld.Lookatsomeoftheapplicationstheydiscuss.DownloadtheAgileSportsAnalyticsGuide.Reviewitandgetafeelforwhatcanbedone.
Responseswillvary.
Goto/resources/multivariate-types-methods.htmlforsomeeasytodigestandcomprehensiveinformationonmultivariateanalysiswithapplications.
Responseswillvary.
REAL-LIFERESEARCH
Case14.1–SatisfactionResearchforPizzaPronto
KeyPoints
Ar
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 個(gè)人信用貸款借款合同
- 工業(yè)機(jī)器人應(yīng)用推廣服務(wù)協(xié)議
- 工作總結(jié)與進(jìn)度匯報(bào)模板
- 優(yōu)惠協(xié)議書(shū)年
- 基于AI技術(shù)的智能家居設(shè)計(jì)開(kāi)發(fā)協(xié)議
- 公司股東合作章程協(xié)議
- 應(yīng)對(duì)企業(yè)運(yùn)營(yíng)挑戰(zhàn)的綜合性解決方案
- 離婚協(xié)議戶口遷移協(xié)議書(shū)
- 金屬礦產(chǎn)品采購(gòu)與銷(xiāo)售合同
- 藥師資格證書(shū)租賃協(xié)議
- 【數(shù)控加工】數(shù)控銑床教案
- 科室藥事管理記錄本
- GB/T 3860-1995文獻(xiàn)敘詞標(biāo)引規(guī)則
- 2023年Beck自殺意念評(píng)估量表
- GB/T 22560-2008鋼鐵件的氣體氮碳共滲
- 統(tǒng)編版四年級(jí)道德與法治下冊(cè)全冊(cè)課件
- 醫(yī)院評(píng)審工作臨床科室資料盒目錄(15個(gè)盒子)
- 壓力性損傷指南解讀
- 湯姆走丟了 詳細(xì)版課件
- 大學(xué)學(xué)院學(xué)生心理危機(jī)預(yù)防與干預(yù)工作預(yù)案
- 國(guó)有土地上房屋征收與補(bǔ)償條例 課件
評(píng)論
0/150
提交評(píng)論