江蘇省東臺(tái)市達(dá)標(biāo)名校2022年中考押題數(shù)學(xué)預(yù)測(cè)卷含解析_第1頁(yè)
江蘇省東臺(tái)市達(dá)標(biāo)名校2022年中考押題數(shù)學(xué)預(yù)測(cè)卷含解析_第2頁(yè)
江蘇省東臺(tái)市達(dá)標(biāo)名校2022年中考押題數(shù)學(xué)預(yù)測(cè)卷含解析_第3頁(yè)
江蘇省東臺(tái)市達(dá)標(biāo)名校2022年中考押題數(shù)學(xué)預(yù)測(cè)卷含解析_第4頁(yè)
江蘇省東臺(tái)市達(dá)標(biāo)名校2022年中考押題數(shù)學(xué)預(yù)測(cè)卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩16頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

江蘇省東臺(tái)市達(dá)標(biāo)名校2022年中考押題數(shù)學(xué)預(yù)測(cè)卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.綠豆在相同條件下的發(fā)芽試驗(yàn),結(jié)果如下表所示:每批粒數(shù)n100300400600100020003000發(fā)芽的粒數(shù)m9628238257094819042850發(fā)芽的頻率0.9600.9400.9550.9500.9480.9520.950下面有三個(gè)推斷:①當(dāng)n=400時(shí),綠豆發(fā)芽的頻率為0.955,所以綠豆發(fā)芽的概率是0.955;②根據(jù)上表,估計(jì)綠豆發(fā)芽的概率是0.95;③若n為4000,估計(jì)綠豆發(fā)芽的粒數(shù)大約為3800粒.其中推斷合理的是()A.① B.①② C.①③ D.②③2.如圖,把△ABC剪成三部分,邊AB,BC,AC放在同一直線上,點(diǎn)O都落在直線MN上,直線MN∥AB,則點(diǎn)O是△ABC的()A.外心 B.內(nèi)心 C.三條中線的交點(diǎn) D.三條高的交點(diǎn)3.如圖所示是放置在正方形網(wǎng)格中的一個(gè),則的值為()A. B. C. D.4.﹣6的倒數(shù)是()A.﹣16 B.15.的相反數(shù)是()A.6 B.-6 C. D.6.tan45o的值為()A. B.1 C. D.7.如圖,四邊形ABCD是邊長(zhǎng)為1的正方形,動(dòng)點(diǎn)E、F分別從點(diǎn)C,D出發(fā),以相同速度分別沿CB,DC運(yùn)動(dòng)(點(diǎn)E到達(dá)C時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng)).連接AE,BF交于點(diǎn)P,過點(diǎn)P分別作PM∥CD,PN∥BC,則線段MN的長(zhǎng)度的最小值為()A. B. C. D.18.汽車剎車后行駛的距離s(單位:m)關(guān)于行駛的時(shí)間t(單位:s)的函數(shù)解析式是s=20t﹣5t2,汽車剎車后停下來(lái)前進(jìn)的距離是()A.10mB.20mC.30mD.40m9.下列各式計(jì)算正確的是()A. B. C. D.10.如果關(guān)于x的分式方程有負(fù)分?jǐn)?shù)解,且關(guān)于x的不等式組的解集為x<-2,那么符合條件的所有整數(shù)a的積是()A.-3 B.0 C.3 D.9二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.觀察下列圖形,若第1個(gè)圖形中陰影部分的面積為1,第2個(gè)圖形中陰影部分的面積為,第3個(gè)圖形中陰影部分的面積為,第4個(gè)圖形中陰影部分的面積為,…則第n個(gè)圖形中陰影部分的面積為_____.(用字母n表示)12.如圖,點(diǎn)A是雙曲線y=﹣在第二象限分支上的一個(gè)動(dòng)點(diǎn),連接AO并延長(zhǎng)交另一分支于點(diǎn)B,以AB為底作等腰△ABC,且∠ACB=120°,點(diǎn)C在第一象限,隨著點(diǎn)A的運(yùn)動(dòng),點(diǎn)C的位置也不斷變化,但點(diǎn)C始終在雙曲線y=上運(yùn)動(dòng),則k的值為_____.13.北京奧運(yùn)會(huì)國(guó)家體育場(chǎng)“鳥巢”的建筑面積為258000平方米,那么258000用科學(xué)記數(shù)法可表示為.14.今年“五一”節(jié)日期間,我市四個(gè)旅游景區(qū)共接待游客約303000多人次,這個(gè)數(shù)據(jù)用科學(xué)記數(shù)法可記為_____.15.中國(guó)古代的數(shù)學(xué)專著《九章算術(shù)》有方程組問題“五只雀,六只燕,共重1斤(等于16兩),雀重燕輕.互換其中一只,恰好一樣重.”設(shè)每只雀、燕的重量各為x兩,y兩,則根據(jù)題意,可得方程組為___.16.如圖所示,扇形OMN的圓心角為45°,正方形A1B1C1A2的邊長(zhǎng)為2,頂點(diǎn)A1,A2在線段OM上,頂點(diǎn)B1在弧MN上,頂點(diǎn)C1在線段ON上,在邊A2C1上取點(diǎn)B2,以A2B2為邊長(zhǎng)繼續(xù)作正方形A2B2C2A3,使得點(diǎn)C2在線段ON上,點(diǎn)A3在線段OM上,……,依次規(guī)律,繼續(xù)作正方形,則A2018M=__________.三、解答題(共8題,共72分)17.(8分)已知:如圖,∠ABC,射線BC上一點(diǎn)D.求作:等腰△PBD,使線段BD為等腰△PBD的底邊,點(diǎn)P在∠ABC內(nèi)部,且點(diǎn)P到∠ABC兩邊的距離相等.18.(8分)如圖,⊙O的直徑DF與弦AB交于點(diǎn)E,C為⊙O外一點(diǎn),CB⊥AB,G是直線CD上一點(diǎn),∠ADG=∠ABD.求證:AD?CE=DE?DF;說(shuō)明:(1)如果你經(jīng)歷反復(fù)探索,沒有找到解決問題的方法,請(qǐng)你把探索過程中的某種思路過程寫出來(lái)(要求至少寫3步);(2)在你經(jīng)歷說(shuō)明(1)的過程之后,可以從下列①、②、③中選取一個(gè)補(bǔ)充或更換已知條件,完成你的證明.①∠CDB=∠CEB;②AD∥EC;③∠DEC=∠ADF,且∠CDE=90°.19.(8分)如圖,AB是的直徑,AF是切線,CD是垂直于AB的弦,垂足為點(diǎn)E,過點(diǎn)C作DA的平行線與AF相交于點(diǎn)F,已知,.求AD的長(zhǎng);求證:FC是的切線.20.(8分)先化簡(jiǎn),再求值:,其中與2,3構(gòu)成的三邊,且為整數(shù).21.(8分)問題提出(1)如圖①,在矩形ABCD中,AB=2AD,E為CD的中點(diǎn),則∠AEB∠ACB(填“>”“<”“=”);問題探究(2)如圖②,在正方形ABCD中,P為CD邊上的一個(gè)動(dòng)點(diǎn),當(dāng)點(diǎn)P位于何處時(shí),∠APB最大?并說(shuō)明理由;問題解決(3)如圖③,在一幢大樓AD上裝有一塊矩形廣告牌,其側(cè)面上、下邊沿相距6米(即AB=6米),下邊沿到地面的距離BD=11.6米.如果小剛的睛睛距離地面的高度EF為1.6米,他從遠(yuǎn)處正對(duì)廣告牌走近時(shí),在P處看廣告效果最好(視角最大),請(qǐng)你在圖③中找到點(diǎn)P的位置,并計(jì)算此時(shí)小剛與大樓AD之間的距離.22.(10分)2018年10月23日,港珠澳大橋正式開通,成為橫亙?cè)诹尕暄笊系囊坏漓n麗的風(fēng)景線.大橋主體工程隧道的東、西兩端各設(shè)置了一個(gè)海中人工島,來(lái)銜接橋梁和海地隧道,西人工島上的點(diǎn)和東人工島上的點(diǎn)間的距離約為5.6千米,點(diǎn)是與西人工島相連的大橋上的一點(diǎn),,,在一條直線上.如圖,一艘觀光船沿與大橋段垂直的方向航行,到達(dá)點(diǎn)時(shí)觀測(cè)兩個(gè)人工島,分別測(cè)得,與觀光船航向的夾角,,求此時(shí)觀光船到大橋段的距離的長(zhǎng)(參考數(shù)據(jù):,,,,,).23.(12分)如圖,以AB邊為直徑的⊙O經(jīng)過點(diǎn)P,C是⊙O上一點(diǎn),連結(jié)PC交AB于點(diǎn)E,且∠ACP=60°,PA=PD.試判斷PD與⊙O的位置關(guān)系,并說(shuō)明理由;若點(diǎn)C是弧AB的中點(diǎn),已知AB=4,求CE?CP的值.24.如圖,已知點(diǎn)、在直線上,且,于點(diǎn),且,以為直徑在的左側(cè)作半圓,于,且.若半圓上有一點(diǎn),則的最大值為________;向右沿直線平移得到;①如圖,若截半圓的的長(zhǎng)為,求的度數(shù);②當(dāng)半圓與的邊相切時(shí),求平移距離.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

①利用頻率估計(jì)概率,大量反復(fù)試驗(yàn)下頻率穩(wěn)定值即概率,n=400,數(shù)值較小,不能近似的看為概率,①錯(cuò)誤;②利用頻率估計(jì)概率,大量反復(fù)試驗(yàn)下頻率穩(wěn)定值即概率,可得②正確;③用4000乘以綠豆發(fā)芽的的概率即可求得綠豆發(fā)芽的粒數(shù),③正確.【詳解】①當(dāng)n=400時(shí),綠豆發(fā)芽的頻率為0.955,所以綠豆發(fā)芽的概率大約是0.955,此推斷錯(cuò)誤;②根據(jù)上表當(dāng)每批粒數(shù)足夠大時(shí),頻率逐漸接近于0.950,所以估計(jì)綠豆發(fā)芽的概率是0.95,此推斷正確;③若n為4000,估計(jì)綠豆發(fā)芽的粒數(shù)大約為4000×0.950=3800粒,此結(jié)論正確.故選D.【點(diǎn)睛】本題考查利用頻率估計(jì)概率,大量反復(fù)試驗(yàn)下頻率穩(wěn)定值即概率.用到的知識(shí)點(diǎn)為:頻率=所求情況數(shù)與總情況數(shù)之比.2、B【解析】

利用平行線間的距離相等,可知點(diǎn)到、、的距離相等,然后可作出判斷.【詳解】解:如圖,過點(diǎn)作于,于,于.圖1,(夾在平行線間的距離相等).如圖:過點(diǎn)作于,作于E,作于.由題意可知:,,,∴,∴圖中的點(diǎn)是三角形三個(gè)內(nèi)角的平分線的交點(diǎn),點(diǎn)是的內(nèi)心,故選B.【點(diǎn)睛】本題考查平行線間的距離,角平分線定理,三角形的內(nèi)心,解題的關(guān)鍵是判斷出.3、D【解析】

首先過點(diǎn)A向CB引垂線,與CB交于D,表示出BD、AD的長(zhǎng),根據(jù)正切的計(jì)算公式可算出答案.【詳解】解:過點(diǎn)A向CB引垂線,與CB交于D,△ABD是直角三角形,∵BD=4,AD=2,∴tan∠ABC=故選:D.【點(diǎn)睛】此題主要考查了銳角三角函數(shù)的定義,關(guān)鍵是掌握正切:銳角A的對(duì)邊a與鄰邊b的比叫做∠A的正切,記作tanA.4、A【解析】解:﹣6的倒數(shù)是﹣165、D【解析】

根據(jù)相反數(shù)的定義解答即可.【詳解】根據(jù)相反數(shù)的定義有:的相反數(shù)是.故選D.【點(diǎn)睛】本題考查了相反數(shù)的意義,一個(gè)數(shù)的相反數(shù)就是在這個(gè)數(shù)前面添上“﹣”號(hào);一個(gè)正數(shù)的相反數(shù)是負(fù)數(shù),一個(gè)負(fù)數(shù)的相反數(shù)是正數(shù),1的相反數(shù)是1.6、B【解析】

解:根據(jù)特殊角的三角函數(shù)值可得tan45o=1,故選B.【點(diǎn)睛】本題考查特殊角的三角函數(shù)值.7、B【解析】分析:由于點(diǎn)P在運(yùn)動(dòng)中保持∠APD=90°,所以點(diǎn)P的路徑是一段以AD為直徑的弧,設(shè)AD的中點(diǎn)為Q,連接QC交弧于點(diǎn)P,此時(shí)CP的長(zhǎng)度最小,再由勾股定理可得QC的長(zhǎng),再求CP即可.詳解:由于點(diǎn)P在運(yùn)動(dòng)中保持∠APD=90°,∴點(diǎn)P的路徑是一段以AD為直徑的弧,設(shè)AD的中點(diǎn)為Q,連接QC交弧于點(diǎn)P,此時(shí)CP的長(zhǎng)度最小,在Rt△QDC中,QC=,∴CP=QC-QP=,故選B.點(diǎn)睛:本題主要考查的是圓的相關(guān)知識(shí)和勾股定理,屬于中等難度的題型.解決這個(gè)問題的關(guān)鍵是根據(jù)圓的知識(shí)得出點(diǎn)P的運(yùn)動(dòng)軌跡.8、B【解析】

利用配方法求二次函數(shù)最值的方法解答即可.【詳解】∵s=20t-5t2=-5(t-2)2+20,∴汽車剎車后到停下來(lái)前進(jìn)了20m.故選B.【點(diǎn)睛】此題主要考查了利用配方法求最值的問題,根據(jù)已知得出頂點(diǎn)式是解題關(guān)鍵.9、C【解析】

解:A.2a與2不是同類項(xiàng),不能合并,故本選項(xiàng)錯(cuò)誤;B.應(yīng)為,故本選項(xiàng)錯(cuò)誤;C.,正確;D.應(yīng)為,故本選項(xiàng)錯(cuò)誤.故選C.【點(diǎn)睛】本題考查冪的乘方與積的乘方;同底數(shù)冪的乘法.10、D【解析】解:,由①得:x≤2a+4,由②得:x<﹣2,由不等式組的解集為x<﹣2,得到2a+4≥﹣2,即a≥﹣3,分式方程去分母得:a﹣3x﹣3=1﹣x,把a(bǔ)=﹣3代入整式方程得:﹣3x﹣6=1﹣x,即,符合題意;把a(bǔ)=﹣2代入整式方程得:﹣3x﹣5=1﹣x,即x=﹣3,不合題意;把a(bǔ)=﹣1代入整式方程得:﹣3x﹣4=1﹣x,即,符合題意;把a(bǔ)=0代入整式方程得:﹣3x﹣3=1﹣x,即x=﹣2,不合題意;把a(bǔ)=1代入整式方程得:﹣3x﹣2=1﹣x,即,符合題意;把a(bǔ)=2代入整式方程得:﹣3x﹣1=1﹣x,即x=1,不合題意;把a(bǔ)=3代入整式方程得:﹣3x=1﹣x,即,符合題意;把a(bǔ)=4代入整式方程得:﹣3x+1=1﹣x,即x=0,不合題意,∴符合條件的整數(shù)a取值為﹣3;﹣1;1;3,之積為1.故選D.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、n﹣1(n為整數(shù))【解析】試題分析:觀察圖形可得,第1個(gè)圖形中陰影部分的面積=()0=1;第2個(gè)圖形中陰影部分的面積=()1=;第3個(gè)圖形中陰影部分的面積=()2=;第4個(gè)圖形中陰影部分的面積=()3=;…根據(jù)此規(guī)律可得第n個(gè)圖形中陰影部分的面積=()n-1(n為整數(shù))?考點(diǎn):圖形規(guī)律探究題.12、1【解析】

根據(jù)題意得出△AOD∽△OCE,進(jìn)而得出,即可得出k=EC×EO=1.【詳解】解:連接CO,過點(diǎn)A作AD⊥x軸于點(diǎn)D,過點(diǎn)C作CE⊥x軸于點(diǎn)E,∵連接AO并延長(zhǎng)交另一分支于點(diǎn)B,以AB為底作等腰△ABC,且∠ACB=120°,∴CO⊥AB,∠CAB=10°,則∠AOD+∠COE=90°,∵∠DAO+∠AOD=90°,∴∠DAO=∠COE,又∵∠ADO=∠CEO=90°,∴△AOD∽△OCE,∴=tan60°=,∴==1,∵點(diǎn)A是雙曲線y=-在第二象限分支上的一個(gè)動(dòng)點(diǎn),∴S△AOD=×|xy|=,∴S△EOC=,即×OE×CE=,∴k=OE×CE=1,故答案為1.【點(diǎn)睛】本題主要考查了反比例函數(shù)與一次函數(shù)的交點(diǎn)以及相似三角形的判定與性質(zhì),正確添加輔助線,得出△AOD∽△OCE是解題關(guān)鍵.13、2.58×1【解析】科學(xué)記數(shù)法就是將一個(gè)數(shù)字表示成(a×10的n次冪的形式),其中1≤|a|<10,n表示整數(shù).即從左邊第一位開始,在首位非零的后面加上小數(shù)點(diǎn),再乘以10的n次冪.258000=2.58×1.14、3.03×101【解析】分析:科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值是易錯(cuò)點(diǎn),由于303000有6位整數(shù),所以可以確定n=6-1=1.詳解:303000=3.03×101,故答案為:3.03×101.點(diǎn)睛:此題考查科學(xué)記數(shù)法表示較大的數(shù)的方法,準(zhǔn)確確定a與n的值是解題的關(guān)鍵.15、【解析】設(shè)每只雀、燕的重量各為x兩,y兩,由題意得:故答案是:或.16、.【解析】

探究規(guī)律,利用規(guī)律即可解決問題.【詳解】∵∠MON=45°,∴△C2B2C2為等腰直角三角形,∴C2B2=B2C2=A2B2.∵正方形A2B2C2A2的邊長(zhǎng)為2,∴OA3=AA3=A2B2=A2C2=2.OA2=4,OM=OB2=,同理,可得出:OAn=An-2An=An-2An-2=,∴OA2028=A2028A2027=,∴A2028M=2-.故答案為2-.【點(diǎn)睛】本題考查規(guī)律型問題,解題的關(guān)鍵是學(xué)會(huì)探究規(guī)律的方法,學(xué)會(huì)利用規(guī)律解決問題,屬于中考常考題型.三、解答題(共8題,共72分)17、作圖見解析.【解析】

由題意可知,先作出∠ABC的平分線,再作出線段BD的垂直平分線,交點(diǎn)即是P點(diǎn).【詳解】∵點(diǎn)P到∠ABC兩邊的距離相等,∴點(diǎn)P在∠ABC的平分線上;∵線段BD為等腰△PBD的底邊,∴PB=PD,∴點(diǎn)P在線段BD的垂直平分線上,∴點(diǎn)P是∠ABC的平分線與線段BD的垂直平分線的交點(diǎn),如圖所示:【點(diǎn)睛】此題主要考查了尺規(guī)作圖,正確把握角平分線的性質(zhì)和線段垂直平分線的性質(zhì)是解題的關(guān)鍵.18、(1)見解析;(2)見解析.【解析】

連接AF,由直徑所對(duì)的圓周角是直角、同弧所對(duì)的圓周角相等的性質(zhì),證得直線CD是⊙O的切線,若證AD?CE=DE?DF,只要征得△ADF∽△DEC即可.在第一問中只能證得∠EDC=∠DAF=90°,所以在第二問中只要證得∠DEC=∠ADF即可解答此題.【詳解】(1)連接AF,∵DF是⊙O的直徑,∴∠DAF=90°,∴∠F+∠ADF=90°,∵∠F=∠ABD,∠ADG=∠ABD,∴∠F=∠ADG,∴∠ADF+∠ADG=90°∴直線CD是⊙O的切線∴∠EDC=90°,∴∠EDC=∠DAF=90°;(2)選取①完成證明∵直線CD是⊙O的切線,∴∠CDB=∠A.∵∠CDB=∠CEB,∴∠A=∠CEB.∴AD∥EC.∴∠DEC=∠ADF.∵∠EDC=∠DAF=90°,∴△ADF∽△DEC.∴AD:DE=DF:EC.∴AD?CE=DE?DF.【點(diǎn)睛】此題考查了切線的性質(zhì)與判定、弦切角定理、相似三角形的判定與性質(zhì)等知識(shí).注意乘積的形式可以轉(zhuǎn)化為比例的形式,通過證明三角形相似得出.還要注意構(gòu)造直徑所對(duì)的圓周角是圓中的常見輔助線.19、(1);(2)證明見解析.【解析】

(1)首先連接OD,由垂徑定理,可求得DE的長(zhǎng),又由勾股定理,可求得半徑OD的長(zhǎng),然后由勾股定理求得AD的長(zhǎng);(2)連接OF、OC,先證明四邊形AFCD是菱形,易證得△AFO≌△CFO,繼而可證得FC是⊙O的切線.【詳解】證明:連接OD,是的直徑,,,設(shè),,,在中,,,解得:,,,,在中,;連接OF、OC,是切線,,,,,四邊形FADC是平行四邊形,,平行四邊形FADC是菱形,,,,,即,即,點(diǎn)C在上,是的切線.【點(diǎn)睛】此題考查了切線的判定與性質(zhì)、菱形的判定與性質(zhì)、垂徑定理、勾股定理.此題難度適中,注意掌握輔助線的作法,注意數(shù)形結(jié)合思想的應(yīng)用.20、1【解析】試題分析:先進(jìn)行分式的除法運(yùn)算,再進(jìn)行分式的加減法運(yùn)算,根據(jù)三角形三邊的關(guān)系確定出a的值,然后代入進(jìn)行計(jì)算即可.試題解析:原式=,∵a與2、3構(gòu)成△ABC的三邊,∴3?2<a<3+2,即1<a<5,又∵a為整數(shù),∴a=2或3或4,∵當(dāng)x=2或3時(shí),原分式無(wú)意義,應(yīng)舍去,∴當(dāng)a=4時(shí),原式==121、(1)>;(2)當(dāng)點(diǎn)P位于CD的中點(diǎn)時(shí),∠APB最大,理由見解析;(3)4米.【解析】

(1)過點(diǎn)E作EF⊥AB于點(diǎn)F,由矩形的性質(zhì)和等腰三角形的判定得到:△AEF是等腰直角三角形,易證∠AEB=90°,而∠ACB<90°,由此可以比較∠AEB與∠ACB的大小(2)假設(shè)P為CD的中點(diǎn),作△APB的外接圓⊙O,則此時(shí)CD切⊙O于P,在CD上取任意異于P點(diǎn)的點(diǎn)E,連接AE,與⊙O交于點(diǎn)F,連接BE、BF;由∠AFB是△EFB的外角,得∠AFB>∠AEB,且∠AFB與∠APB均為⊙O中弧AB所對(duì)的角,則∠AFB=∠APB,即可判斷∠APB與∠AEB的大小關(guān)系,即可得點(diǎn)P位于何處時(shí),∠APB最大;(3)過點(diǎn)E作CE∥DF,交AD于點(diǎn)C,作AB的垂直平分線,垂足為點(diǎn)Q,并在垂直平分線上取點(diǎn)O,使OA=CQ,以點(diǎn)O為圓心,OB為半徑作圓,則⊙O切CE于點(diǎn)G,連接OG,并延長(zhǎng)交DF于點(diǎn)P,連接OA,再利用勾股定理以及長(zhǎng)度關(guān)系即可得解.【詳解】解:(1)∠AEB>∠ACB,理由如下:如圖1,過點(diǎn)E作EF⊥AB于點(diǎn)F,∵在矩形ABCD中,AB=2AD,E為CD中點(diǎn),∴四邊形ADEF是正方形,∴∠AEF=45°,同理,∠BEF=45°,∴∠AEB=90°.而在直角△ABC中,∠ABC=90°,∴∠ACB<90°,∴∠AEB>∠ACB.故答案為:>;(2)當(dāng)點(diǎn)P位于CD的中點(diǎn)時(shí),∠APB最大,理由如下:假設(shè)P為CD的中點(diǎn),如圖2,作△APB的外接圓⊙O,則此時(shí)CD切⊙O于點(diǎn)P,在CD上取任意異于P點(diǎn)的點(diǎn)E,連接AE,與⊙O交于點(diǎn)F,連接BE,BF,∵∠AFB是△EFB的外角,∴∠AFB>∠AEB,∵∠AFB=∠APB,∴∠APB>∠AEB,故點(diǎn)P位于CD的中點(diǎn)時(shí),∠APB最大:(3)如圖3,過點(diǎn)E作CE∥DF交AD于點(diǎn)C,作線段AB的垂直平分線,垂足為點(diǎn)Q,并在垂直平分線上取點(diǎn)O,使OA=CQ,以點(diǎn)O為圓心,OA長(zhǎng)為半徑作圓,則⊙O切CE于點(diǎn)G,連接OG,并延長(zhǎng)交DF于點(diǎn)P,此時(shí)點(diǎn)P即為小剛所站的位置,由題意知DP=OQ=,∵OA=CQ=BD+QB﹣CD=BD+AB﹣CD,BD=11.6米,AB=3米,CD=EF=1.6米,∴OA=11.6+3﹣1.6=13米,∴DP=米,即小剛與大樓AD之間的距離為4米時(shí)看廣告牌效果最好.【點(diǎn)睛】本題考查了矩形的性質(zhì),正方形的判定與性質(zhì),圓周角定理的推論,三角形外角的性質(zhì),線段垂直平分線的性質(zhì),勾股定理等知識(shí),難度較大,熟練掌握各知識(shí)點(diǎn)并正確作出輔助圓是解答本題的關(guān)鍵.22、5.6千米【解析】

設(shè)PD的長(zhǎng)為x千米,DA的長(zhǎng)為y千米,在Rt△PAD中利用正切的定義得到tan18°=,即y=0.33x,同樣在Rt△PDB中得到y(tǒng)+5.6=1.33x,所以0.33x+5.6=1.33x,然后解方程求出x即可.【詳解】設(shè)PD的長(zhǎng)為x千米,DA的長(zhǎng)為y千米,在Rt△PAD中,tan∠DPA=,即tan18°=,∴y=0.33x,在Rt△PDB中,tan∠DPB=,即tan53°=,∴y+5.6=1.33x,∴0.33x+5.6=1.33x,解得x=5.6,答:此時(shí)觀光船到大橋AC段的距離PD的長(zhǎng)為5.6千米.【點(diǎn)睛】本題考查了解直角三角形的應(yīng)用:根據(jù)題目已知特點(diǎn)選用適當(dāng)銳角三角函數(shù)或邊角關(guān)系去解直角三角形,得到數(shù)學(xué)問題的答案,再轉(zhuǎn)化得到實(shí)際問題的答案.2

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論