2023-2024學(xué)年上海黃浦區(qū)高一數(shù)學(xué)第二學(xué)期期末統(tǒng)考模擬試題含解析_第1頁
2023-2024學(xué)年上海黃浦區(qū)高一數(shù)學(xué)第二學(xué)期期末統(tǒng)考模擬試題含解析_第2頁
2023-2024學(xué)年上海黃浦區(qū)高一數(shù)學(xué)第二學(xué)期期末統(tǒng)考模擬試題含解析_第3頁
2023-2024學(xué)年上海黃浦區(qū)高一數(shù)學(xué)第二學(xué)期期末統(tǒng)考模擬試題含解析_第4頁
2023-2024學(xué)年上海黃浦區(qū)高一數(shù)學(xué)第二學(xué)期期末統(tǒng)考模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年上海黃浦區(qū)高一數(shù)學(xué)第二學(xué)期期末統(tǒng)考模擬試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.有3個興趣小組,甲、乙兩位同學(xué)各自參加其中一個小組,每位同學(xué)參加各個小組的可能性相同,則這兩位同學(xué)參加同一個興趣小組的概率為A. B. C. D.2.已知點,,則直線的斜率是()A. B. C.5 D.13.已知函數(shù)f(x)=sin(ωx+φ)(其中ω>0,﹣π<φ<π),若該函數(shù)在區(qū)間()上有最大值而無最小值,且滿足f()+f()=0,則實數(shù)φ的取值范圍是()A.(,) B.(,) C.(,) D.(,)4.將正整數(shù)按第組含個數(shù)分組:那么所在的組數(shù)為()A. B. C. D.5.若角的頂點與坐標(biāo)原點重合,始邊與x軸的正半軸重合,終邊經(jīng)過點,則()A. B. C. D.6.函數(shù)的最小正周期為,則的圖象的一條對稱軸方程是()A. B. C. D.7.在正方體中為底面的中心,為的中點,則異面直線與所成角的正弦值為()A. B. C. D.8.若平面平面,直線,直線,則關(guān)于直線、的位置關(guān)系的說法正確的是()A. B.、異面 C. D.、沒有公共點9.在正方體中,點是四邊形的中心,關(guān)于直線,下列說法正確的是()A. B.C.平面 D.平面10.在中,若,,,則()A., B.,C., D.,二、填空題:本大題共6小題,每小題5分,共30分。11.在銳角△中,角所對應(yīng)的邊分別為,若,則角等于________.12.已知a,b為常數(shù),若,則______;13.設(shè)公差不為零的等差數(shù)列的前項和為,若,則__________.14.若當(dāng)時,不等式恒成立,則實數(shù)a的取值范圍是_____.15.函數(shù)的最小值為____________.16.若,則=_________________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.設(shè)函數(shù),且(1)求的值;(2)試判斷在上的單調(diào)性,并用定義加以證明;(3)若求值域;18.已知等差數(shù)列滿足,,其前項和為.(1)求的通項公式及;(2)令,求數(shù)列的前項和,并求的值.19.設(shè)數(shù)列是等差數(shù)列,其前n項和為;數(shù)列是等比數(shù)列,公比大于0,其前項和為.已知,,,.(1)求數(shù)列和數(shù)列的通項公式;(2)設(shè)數(shù)列的前n項和為,若對任意的恒成立,求實數(shù)m的取值范圍.20.我國是世界上嚴(yán)重缺水的國家,某市為了制定合理的節(jié)水方案,對居民用水情況進(jìn)行了調(diào)查,通過抽樣,獲得了某年100位居民每人的月均用水量單位:噸,將數(shù)據(jù)按照,,分成9組,制成了如圖所示的頻率分布直方圖.(1)設(shè)該市有30萬居民,估計全市居民中月均用水量不低于3噸的人數(shù)說明理由;(2)估計居民月均用水量的中位數(shù).21.已知公差不為0的等差數(shù)列{an}滿足a3=9,a(1)求{a(2)設(shè)數(shù)列{bn}滿足bn=1n(

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】每個同學(xué)參加的情形都有3種,故兩個同學(xué)參加一組的情形有9種,而參加同一組的情形只有3種,所求的概率為p=選A2、D【解析】

根據(jù)直線的斜率公式,準(zhǔn)確計算,即可求解,得到答案.【詳解】由題意,根據(jù)直線的斜率公式,可得直線的斜率,故選D.【點睛】本題主要考查了直線的斜率公式的應(yīng)用,其中解答中熟記直線的斜率公式,準(zhǔn)確計算是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.3、D【解析】

根據(jù)題意可畫圖分析確定的周期,再列出在區(qū)間端點滿足的關(guān)系式求解即可.【詳解】由題該函數(shù)在區(qū)間()上有最大值而無最小值可畫出簡圖,又,故周期滿足.故.故.又,故.故選:D【點睛】本題主要考查了正弦型函數(shù)圖像的綜合運(yùn)用,需要根據(jù)題意列出端點處的函數(shù)對應(yīng)的表達(dá)式求解.屬于中等題型.4、B【解析】

觀察規(guī)律,看每一組的最后一個數(shù)與組數(shù)的關(guān)系,可知第n組最后一個數(shù)是2+3+4+…..+n+1=,然后再驗證求解.【詳解】觀察規(guī)律,第一組最后一個數(shù)是2=2,第二組最后一個數(shù)是5=2+3,第三組最后一個數(shù)是9=2+3+4,……,依此,第n組最后一個數(shù)是2+3+4+…..+n+1=.當(dāng)時,,所以所在的組數(shù)為63.故選:B【點睛】本題主要考查了數(shù)列的遞推,還考查了推理論證的能力,屬于中檔題.5、C【解析】

根據(jù)三角函數(shù)定義結(jié)合正弦的二倍角公式計算即可【詳解】由題意,∴,,.故選:C.【點睛】本題考查三角函數(shù)的定義,考查二倍角的正弦公式,掌握三角函數(shù)定義是解題關(guān)鍵.6、B【解析】

根據(jù)最小正周期為求解與解析式,再求解的對稱軸判斷即可.【詳解】因為最小正周期為,故.故,對稱軸方程為,解得.當(dāng)時,.故選:B【點睛】本題主要考查了三角函數(shù)最小正周期的應(yīng)用以及對稱軸的計算.屬于基礎(chǔ)題.7、B【解析】

取BC中點為M,連接OM,EM找出異面直線夾角為,在三角形中利用邊角關(guān)系得到答案.【詳解】取BC中點為M,連接OM,EM在正方體中為底面的中心,為的中點易知:異面直線與所成角為設(shè)正方體邊長為2,在中:故答案選B【點睛】本題考查了立體幾何里異面直線的夾角,通過平行找到對應(yīng)的角是解題的關(guān)鍵.8、D【解析】

根據(jù)條件知:關(guān)于直線、的位置關(guān)系異面或者平行,故沒有公共點.【詳解】若平面平面,直線,直線,則關(guān)于直線、的位置關(guān)系是異面或者平行,所以、沒有公共點.故答案選D【點睛】本題考查了直線,平面的位置關(guān)系,意在考查學(xué)生的空間想象能力.9、C【解析】

設(shè),證明出,可判斷出選項A、C的正誤;由為等腰三角形結(jié)合可判斷出B選項的正誤;證明平面可判斷出D選項的正誤.【詳解】如下圖所示,設(shè),則為的中點,在正方體中,,則四邊形為平行四邊形,.易知點、分別為、的中點,,則四邊形為平行四邊形,則,由于過直線外一點有且只有一條直線與已知直線平行,則A選項中的命題錯誤;,平面,平面,平面,C選項中的命題正確;易知,則為等腰三角形,且為底,所以,與不垂直,由于,則與不垂直,B選項中的命題錯誤;四邊形為正方形,則,在正方體中,平面,平面,,,平面,平面,,同理可證,且,平面,則與平面不垂直,D選項中的命題錯誤.故選C.【點睛】本題考查線線、線面關(guān)系的判斷,解題時應(yīng)充分利用線面平行與垂直等判定定理證明線面平行、線面垂直,考查推理能力,屬于中等題.10、A【解析】

利用正弦定理列出關(guān)系式,把與代入得出與的關(guān)系式,再與已知等式聯(lián)立求出即可.【詳解】∵在中,,,,∴由正弦定理得:,即,聯(lián)立解得:.故選:A.【點睛】本題考查了正弦定理,以及特殊角的三角函數(shù)值,熟練掌握定理是解本題的關(guān)鍵,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】試題分析:利用正弦定理化簡,得,因為,所以,因為為銳角,所以.考點:正弦定理的應(yīng)用.【方法點晴】本題主要考查了正弦定理的應(yīng)用、以及特殊角的三角函數(shù)值問題,其中解答中涉及到解三角形中的邊角互化,轉(zhuǎn)化為三角函數(shù)求值的應(yīng)用,解答中熟練掌握正弦定理的變形,完成條件的邊角互化是解答的關(guān)鍵,注重考查了分析問題和解答問題的能力,同時注意條件中銳角三角形,屬于中檔試題.12、2【解析】

根據(jù)極限存在首先判斷出的值,然后根據(jù)極限的值計算出的值,由此可計算出的值.【詳解】因為,所以,又因為,所以,所以.故答案為:.【點睛】本題考查根據(jù)極限的值求解參數(shù),難度較易.13、【解析】

設(shè)出數(shù)列的首項和公差,根據(jù)等差數(shù)列通項公式和前項和公式,代入條件化簡得和的關(guān)系,再代入所求的式子進(jìn)行化簡求值.【詳解】解:設(shè)等差數(shù)列的首項為,公差為,由,得,得,.故答案為:【點睛】本題考查了等差數(shù)列通項公式和前n項和公式的簡單應(yīng)用,屬于基礎(chǔ).14、【解析】

用換元法把不等式轉(zhuǎn)化為二次不等式.然后用分離參數(shù)法轉(zhuǎn)化為求函數(shù)最值.【詳解】設(shè),是增函數(shù),當(dāng)時,,不等式化為,即,不等式在上恒成立,時,顯然成立,,對上恒成立,由對勾函數(shù)性質(zhì)知在是減函數(shù),時,,∴,即.綜上,.故答案為:.【點睛】本題考查不等式恒成立問題,解題方法是轉(zhuǎn)化與化歸,首先用換元法化指數(shù)型不等式為一元二次不等式,再用分離參數(shù)法轉(zhuǎn)化為求函數(shù)最值.15、【解析】

將函數(shù)構(gòu)造成的形式,用換元法令,在定義域上根據(jù)新函數(shù)的單調(diào)性求函數(shù)最小值,之后可得原函數(shù)最小值?!驹斀狻坑深}得,,令,則函數(shù)在遞增,可得的最小值為,則的最小值為.故答案為:【點睛】本題考查了換元法,以及函數(shù)的單調(diào)性,是基礎(chǔ)題。16、【解析】分析:由二倍角公式求得,再由誘導(dǎo)公式得結(jié)論.詳解:由已知,∴.故答案為.點睛:三角函數(shù)恒等變形中,公式很多,如誘導(dǎo)公式、同角關(guān)系,兩角和與差的正弦(余弦、正切)公式、二倍角公式,先選用哪個公式后選用哪個公式在解題中尤其重要,但其中最重要的是“角”的變換,要分析出已知角與未知角之間的關(guān)系,通過這個關(guān)系都能選用恰當(dāng)?shù)墓剑?、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)m=1;(2)單調(diào)遞減,證明見解析;(3).【解析】

(1)由由(1)即可解得;(2)利用減函數(shù)的定義可以判斷、證明;(3)利用函數(shù)的單調(diào)性求函數(shù)的值域.【詳解】(1)由(1),得,.(2)在上單調(diào)遞減.證明:由(1)知,,設(shè),則.因為,所以,,所以,即,所以函數(shù)在上單調(diào)遞減.(3)由于函數(shù)在上單調(diào)遞減.所以.所以函數(shù)的值域為.【點睛】本題考查函數(shù)的單調(diào)性及其應(yīng)用,定義證明函數(shù)單調(diào)性的常用方法,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.18、(1),;(2),【解析】

(1)利用等差數(shù)列的通項公式及前n項的和公式可得答案;(2)利用“裂項求和”法可得答案.【詳解】解:(1)設(shè)等差數(shù)列的公差為,由,得,又,解得.所以.所以.(2)由,得.設(shè)的前項和為,則.【點睛】本題主要考查等差數(shù)列的通項公式及前n項的和,及數(shù)列求和的“裂項相消法”,屬于中檔題.19、(1);;(2)【解析】

(1)根據(jù)等比數(shù)列與等差數(shù)列,分別設(shè)公比與公差再用基本量法求解即可.(2)由(1)有再錯位相減求解,利用不等式恒成立的方法求解即可.【詳解】解:(1)設(shè)等比數(shù)列的公比為q,由,,可得.∵,可得.故;設(shè)等差數(shù)列的公差為d,由,得,由,得,∴.故;(2)根據(jù)題意知,①②①—②得∴,對任意的恒成立,∴【點睛】本題主要考查了等差等比數(shù)列的基本量求解方法以及錯位相減和不等式恒成立的問題.屬于中檔題.20、(1)3.6萬;(2)2.06.【解析】

(1)由頻率分布直方圖的性質(zhì),求得,利用頻率分布直方圖求得月均用水量不低于3噸的頻率為,進(jìn)而得到樣本中月均用水量不低于3噸的戶數(shù);(2)根據(jù)頻率分布直方圖,利用中位數(shù)的定義,即可求解.【詳解】(1)由頻率分布直方圖的性質(zhì),可得,即,解得,又由頻率分布直方圖可得月均用水量不低于3噸的頻率為,即樣本中月均用水量不低于3噸的戶數(shù)為萬.(2)根據(jù)頻率分布直方圖,得:,則,所以中位數(shù)應(yīng)在組內(nèi),即,所以中位數(shù)是.【點

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論