版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
江西省撫州市南城一中2023-2024學(xué)年高一下數(shù)學(xué)期末監(jiān)測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知圓,直線,點(diǎn)在直線上.若存在圓上的點(diǎn),使得(為坐標(biāo)原點(diǎn)),則的取值范圍是A. B. C. D.2.設(shè),則下列不等式恒成立的是A. B.C. D.3.設(shè)等差數(shù)列的前項和為,若公差,,則的值為()A.65 B.62 C.59 D.564.向量,,若,則實數(shù)的值為A. B. C. D.5.設(shè)等差數(shù)列的前n項和為,首項,公差,,則最大時,n的值為()A.11 B.10 C.9 D.86.下列角中終邊與相同的角是()A. B. C. D.7.已知向量,則()A.12 B. C. D.88.中國古代數(shù)學(xué)著作《算法統(tǒng)宗》中有這樣一個問題:“三百七十八里關(guān),初行健步不為難,次日腳痛減一半,六朝才得到其關(guān),要見次日行里數(shù),請公仔細(xì)算相還.”其意思是“有一個人走378里,第一天健步行走,從第二天起腳痛每天走的路程是前一天的一半,走了6天后到達(dá)目的地.”請問第三天走了()A.60里 B.48里 C.36里 D.24里9.設(shè),則的大小關(guān)系為()A. B. C. D.10.的弧度數(shù)是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.在△ABC中,若∠A=120°,AB=5,BC=7,則△ABC的面積S=_____.12.函數(shù)y=tan13.已知,且,則________.14.和2的等差中項的值是______.15.已知三點(diǎn)A(1,0),B(0,),C(2,),則△ABC外接圓的圓心到原點(diǎn)的距離為________.16.已知正實數(shù)滿足,則的值為_____________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.在直角坐標(biāo)系中,,,點(diǎn)在直線上.(1)若三點(diǎn)共線,求點(diǎn)的坐標(biāo);(2)若,求點(diǎn)的坐標(biāo).18.如圖,在四棱錐中,底面是菱形,底面.(Ⅰ)證明:;(Ⅱ)若,求直線與平面所成角的余弦值.19.如圖,為圓的直徑,點(diǎn),在圓上,,矩形和圓所在的平面互相垂直,已知,.(1)求證:平面平面;(2)當(dāng)時,求多面體的體積.20.已知所在平面內(nèi)一點(diǎn),滿足:的中點(diǎn)為,的中點(diǎn)為,的中點(diǎn)為.設(shè),,如圖,試用,表示向量.21.已知,設(shè).(1)若圖象中相鄰兩條對稱軸間的距離不小于,求的取值范圍;(2)若的最小正周期為,且當(dāng)時,的最大值是,求的解析式,并說明如何由的圖象變換得到的圖象.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
根據(jù)條件若存在圓C上的點(diǎn)Q,使得為坐標(biāo)原點(diǎn)),等價即可,求出不等式的解集即可得到的范圍【詳解】圓O外有一點(diǎn)P,圓上有一動點(diǎn)Q,在PQ與圓相切時取得最大值.
如果OP變長,那么可以獲得的最大值將變小.可以得知,當(dāng),且PQ與圓相切時,,
而當(dāng)時,Q在圓上任意移動,存在恒成立.
因此滿足,就能保證一定存在點(diǎn)Q,使得,否則,這樣的點(diǎn)Q是不存在的,
點(diǎn)在直線上,,即
,
,
計算得出,,
的取值范圍是,
故選B.考點(diǎn):正弦定理、直線與圓的位置關(guān)系.2、C【解析】
利用不等式的性質(zhì),合理推理,即可求解,得到答案.【詳解】因為,所以,所以A項不正確;因為,所以,,則,所以B不正確;因為,則,所以,又因為,則,所以等號不成立,所以C正確;由,所以,所以D錯誤.【點(diǎn)睛】本題主要考查了不等式的性質(zhì)的應(yīng)用,其中解答中熟記不等式的性質(zhì),合理運(yùn)算是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.3、A【解析】
先求出,再利用等差數(shù)列的性質(zhì)和求和公式可求.【詳解】,所以,故選A.【點(diǎn)睛】一般地,如果為等差數(shù)列,為其前項和,則有性質(zhì):(1)若,則;(2)且;(3)且為等差數(shù)列;(4)為等差數(shù)列.4、C【解析】
利用向量平行的坐標(biāo)表示,即可求出.【詳解】向量,,,即解得.故選.【點(diǎn)睛】本題主要考查向量平行的坐標(biāo)表示.5、B【解析】
由等差數(shù)列前項和公式得出,結(jié)合數(shù)列為遞減數(shù)列確定,從而得到最大時,的值為10.【詳解】由題意可得等差數(shù)列的首項,公差則數(shù)列為遞減數(shù)列即當(dāng)時,最大故選B?!军c(diǎn)睛】本題對等差數(shù)列前項和以及通項公式,關(guān)鍵是將轉(zhuǎn)化為,結(jié)合數(shù)列的單調(diào)性確定最大時,的值為10.6、B【解析】與30°的角終邊相同的角α的集合為{α|α=330°+k?360°,k∈Z}當(dāng)k=-1時,α=-30°,故選B7、C【解析】
根據(jù)向量的坐標(biāo)表示求出,即可得到模長.【詳解】由題,,所以.故選:C【點(diǎn)睛】此題考查向量的數(shù)乘運(yùn)算和減法運(yùn)算的坐標(biāo)表示,并求向量的模長,關(guān)鍵在于熟記公式,準(zhǔn)確求解.8、B【解析】
根據(jù)題意得出等比數(shù)列的項數(shù)、公比和前項和,由此列方程,解方程求得首項,進(jìn)而求得的值.【詳解】依題意步行路程是等比數(shù)列,且,,,故,解得,故里.故選B.【點(diǎn)睛】本小題主要考查中國古典數(shù)學(xué)文化,考查等比數(shù)列前項和的基本量計算,屬于基礎(chǔ)題.9、B【解析】
不難發(fā)現(xiàn)從而可得【詳解】,故選B.【點(diǎn)睛】本題考查利用指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性比較數(shù)大?。?0、B【解析】
由角度與弧度的關(guān)系轉(zhuǎn)化.【詳解】-150.故選:B.【點(diǎn)睛】本題考查角度與弧度的互化,解題關(guān)鍵是掌握關(guān)系式:.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
用余弦定理求出邊的值,再用面積公式求面積即可.【詳解】解:據(jù)題設(shè)條件由余弦定理得,即,即解得,故的面積,故答案為:.【點(diǎn)睛】本題主要考查余弦定理解三角形,考查三角形的面積公式,屬于基礎(chǔ)題.12、{【解析】
解方程12【詳解】由題得12x+故答案為{x|x≠2kπ+【點(diǎn)睛】本題主要考查正切型函數(shù)的定義域的求法,意在考查學(xué)生對該知識的理解掌握水平,屬于基礎(chǔ)題.13、【解析】試題分析:由得:解方程組:得:或因為,所以所以不合題意,舍去所以,所以,答案應(yīng)填:.考點(diǎn):同角三角函數(shù)的基本關(guān)系和兩角差的三角函數(shù)公式.14、【解析】
根據(jù)等差中項性質(zhì)求解即可【詳解】設(shè)等差中項為,則,解得故答案為:【點(diǎn)睛】本題考查等差中項的求解,屬于基礎(chǔ)題15、【解析】
求出的垂直平分線方程,兩垂直平分線交點(diǎn)為外接圓圓心.再由兩點(diǎn)間距離公式計算.【詳解】由點(diǎn)B(0,),C(2,),得線段BC的垂直平分線方程為x=1,①由點(diǎn)A(1,0),B(0,),得線段AB的垂直平分線方程為②聯(lián)立①②,解得△ABC外接圓的圓心坐標(biāo)為,其到原點(diǎn)的距離為.故答案為:【點(diǎn)睛】本題考查三角形外接圓圓心坐標(biāo),外心是三角形三條邊的中垂線的交點(diǎn),到三頂點(diǎn)距離相等.16、【解析】
將已知等式,兩邊同取以為底的對數(shù),求出,利用換底公式,即可求解.【詳解】,,,.故答案為:.【點(diǎn)睛】本題考查指對數(shù)之間的關(guān)系,考查對數(shù)的運(yùn)算以及應(yīng)用換底公式求值,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)三點(diǎn)共線,則有與共線,由向量共線的坐標(biāo)運(yùn)算可得點(diǎn)坐標(biāo);(2),則,由向量數(shù)量積的坐標(biāo)運(yùn)算可得【詳解】設(shè),則,(1)因為三點(diǎn)共線,所以與共線,所以,,點(diǎn)的坐標(biāo)為.(2)因為,所以,即,,點(diǎn)的坐標(biāo)為.【點(diǎn)睛】本題考查向量共線和向量垂直的坐標(biāo)運(yùn)算,屬于基礎(chǔ)題.18、(Ⅰ)見解析(Ⅱ)【解析】
(Ⅰ)由底面推出,由菱形的性質(zhì)推出,即可推出平面從而得到;(Ⅱ)根據(jù)已知條件先求出AB,再利用菱形的對角線垂直求出AC,由求出PC,即可求得余弦值.【詳解】(Ⅰ)證明:連接,∵底面,底面,∴.∵四邊形是菱形,∴.又∵,平面,平面,∴平面,∴.(Ⅱ)設(shè)直線AC與BD交于點(diǎn)O,∵底面,∴直線與平面所成角的是.設(shè)“”,由,可得,∵四邊形是菱形,在中,,則,于是,∴∴直線與平面所成角的余弦值是.【點(diǎn)睛】本題考查線線垂直、線面垂直的證明,菱形的性質(zhì),直線與平面所成的角,屬于基礎(chǔ)題.19、(1)證明見解析;(2)【解析】
(1)由題可得,,從而可得平面,由此證明平面平面;(2)過作交于,所以為四棱錐的高,多面體的體積,利用體積公式即可得到答案.【詳解】(1)證明:∵平面平面,矩形,,平面平面,∴平面,∵平面,∴,又∵為圓的直徑,∴,又,∴平面,∵平面,平面平面;(2)過作交于,由面面垂直性質(zhì)可得平面,即為四棱錐的高,由是邊長為1的等邊三角形,可得,又正方形的面積為4,∴..所以.【點(diǎn)睛】本題主要考查面面垂直的證明,以及求多面體的體積,要求熟練掌握相應(yīng)判定定理以及椎體、柱體的體積公式,屬于中檔題.20、【解析】
由為的中點(diǎn),則可得,為的中點(diǎn),則可得,從中可以求出向量,得到答案.【詳解】由為的中點(diǎn),則可得.又為的中點(diǎn),所以【點(diǎn)睛】本題考查向量的基本定理和向量的加減法的法則,屬于中檔題.21、(1);(2);平移變換過程見解析.【解析】
(1)根據(jù)平面向量的坐標(biāo)運(yùn)算,表示出的解析式,結(jié)合輔助角公式化簡三角函數(shù)式.結(jié)合相鄰兩條對稱軸間的距離不小于及周期公式,即可求得的取值范圍;(2)根據(jù)最小正周期,求得的值.代入解析式,結(jié)合正弦函數(shù)的圖象、性質(zhì)與的最大值是,即可求得的解析式.再根據(jù)三角函數(shù)圖象平移變換,即可描
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2025學(xué)年文山壯族苗族自治州西疇縣數(shù)學(xué)三年級第一學(xué)期期末教學(xué)質(zhì)量檢測模擬試題含解析
- 大學(xué)生軍訓(xùn)心得筆記10篇
- 婚禮新娘答謝詞(15篇)
- 學(xué)生頂崗實習(xí)報告
- 標(biāo)準(zhǔn)的辭職報告模板集合九篇
- 大學(xué)生面試自我介紹集錦15篇
- 藥店疫情應(yīng)急預(yù)案
- 九年級化學(xué)上冊 第七單元 燃料及其利用 課題1 燃燒與滅火教學(xué)實錄 (新版)新人教版
- 小學(xué)語文教師教學(xué)計劃三篇
- 中專第一學(xué)年自我鑒定集錦7篇
- 幼兒園防止小學(xué)化工作計劃
- DB1403-T 35-2024 耐火澆注料施工現(xiàn)場管理規(guī)范
- 連鑄工職業(yè)技能大賽考試題庫-上(單選、多選題)
- 2024年四川省成都市青羊區(qū)數(shù)學(xué)六上期末考試試題含解析
- 內(nèi)蒙古呼和浩特市(2024年-2025年小學(xué)四年級語文)部編版階段練習(xí)(下學(xué)期)試卷及答案
- 人教版高中地理必修一《常見地貌類型》課件
- DB65-T 4828-2024 和田玉(子料)鑒定
- 人教版(2024新版)七年級上冊英語各單元重點(diǎn)單詞、句型背誦清單
- 證券投資學(xué)期末考試卷及答案2套
- 爆花(2023年陜西中考語文試卷記敘文閱讀題及答案)
- 2024住院患者靜脈血栓栓塞癥預(yù)防護(hù)理與管理專家共識要點(diǎn)(全文)
評論
0/150
提交評論