版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
湖南省長沙市雨花區(qū)南雅中學(xué)2024屆數(shù)學(xué)高一下期末預(yù)測試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.圓關(guān)于直線對稱,則的值是()A. B. C. D.2.已知點P為圓上一個動點,O為坐標(biāo)原點,過P點作圓O的切線與圓相交于兩點A,B,則的最大值為()A. B.5 C. D.3.在中,已知,那么一定是()A.直角三角形 B.等腰三角形 C.等腰直角三角形 D.正三角形4.平面內(nèi)任一向量都可以表示成的形式,下列關(guān)于向量的說法中正確的是()A.向量的方向相同 B.向量中至少有一個是零向量C.向量的方向相反 D.當(dāng)且僅當(dāng)時,5.已知向量,,,且,則()A. B. C. D.6.一個三角形的三邊長成等比數(shù)列,公比為,則函數(shù)的值域為()A.(,+∞) B.[,+∞) C.(,-1) D.[,-1)7.已知直角三角形ABC,斜邊,D為AB邊上的一點,,,則CD的長為()A. B. C.2 D.38.在三棱錐中,,,則三棱錐外接球的體積是()A. B. C. D.9.已知冪函數(shù)過點,令,,記數(shù)列的前項和為,則時,的值是()A.10 B.120 C.130 D.14010.執(zhí)行如圖所示的程序框圖,則輸出的s的值為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)的最小正周期為______________.12.?dāng)?shù)列滿足,設(shè)為數(shù)列的前項和,則__________.13.向量.若向量,則實數(shù)的值是________.14.在空間直角坐標(biāo)系中,點關(guān)于原點的對稱點的坐標(biāo)為__________.15.如圖是一正方體的表面展開圖.、、都是所在棱的中點.則在原正方體中:①與異面;②平面;③平面平面;④與平面形成的線面角的正弦值是;⑤二面角的余弦值為.其中真命題的序號是______.16.在中,,,面積為,則________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.“中國人均讀書本(包括網(wǎng)絡(luò)文學(xué)和教科書),比韓國的本、法國的本、日本的本、猶太人的本少得多,是世界上人均讀書最少的國家”,這個論斷被各種媒體反復(fù)引用.出現(xiàn)這樣統(tǒng)計結(jié)果無疑是令人尷尬的,而且和其他國家相比,我國國民的閱讀量如此之低,也和我國是傳統(tǒng)的文明古國、禮儀之邦的地位不相符.某小區(qū)為了提高小區(qū)內(nèi)人員的讀書興趣,特舉辦讀書活動,準(zhǔn)備進(jìn)一定量的書籍豐富小區(qū)圖書站,由于不同年齡段需看不同類型的書籍,為了合理配備資源,現(xiàn)對小區(qū)內(nèi)看書人員進(jìn)行年齡調(diào)查,隨機(jī)抽取了一天名讀書者進(jìn)行調(diào)查,將他們的年齡分成段:,,,,,后得到如圖所示的頻率分布直方圖.問:(1)估計在這名讀書者中年齡分布在的人數(shù);(2)求這名讀書者年齡的平均數(shù)和中位數(shù);(3)若從年齡在的讀書者中任取名,求這兩名讀書者年齡在的人數(shù)恰為的概率.18.已知圓C:(x-1)2(1)當(dāng)l經(jīng)過圓心C時,求直線l的方程;(2)當(dāng)弦AB被點P平分時,寫出直線l的方程19.經(jīng)過長期觀測得到:在交通繁忙的時段內(nèi),某公路汽車的車流量(千輛/h)與汽車的平均速度之間的函數(shù)關(guān)系式為:.(1)若要求在該段時間內(nèi)車流量超過2千輛,則汽車在平均速度應(yīng)在什么范圍內(nèi)?(2)在該時段內(nèi),若規(guī)定汽車平均速度不得超過,當(dāng)汽車的平均速度為多少時,車流量最大?最大車流量為多少?20.已知向量,滿足:=4,=3,(Ⅰ)求·的值;(Ⅱ)求的值.21.已知點、、(),且.(1)求函數(shù)的解析式;(2)如果當(dāng)時,兩個函數(shù)與的圖象有兩個交點,求的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】圓關(guān)于直線對稱,所以圓心(1,1)在直線上,得.故選B.2、A【解析】
作交于,連接設(shè),得,,進(jìn)而,換元,得,通過求得的范圍即可求解【詳解】作交于,連接設(shè),則,∴取,∴.顯然易知令,,當(dāng)且僅當(dāng)?shù)忍柍闪?;此時∴故選A【點睛】本題考查圓的幾何性質(zhì),切線的應(yīng)用,弦長公式,考查函數(shù)最值得求解,考查換元思想,是難題3、B【解析】
先化簡sinAcosB=sinC=,即得三角形形狀.【詳解】由sinAcosB=sinC得所以sinBcosA=0,因為A,B∈(0,π),所以sinB>0,所以cosA=0,所以A=,所以三角形是直角三角形.故答案為A【點睛】本題主要考查三角恒等變換和三角函數(shù)的圖像性質(zhì),意在考查學(xué)生對這些知識的掌握水平和分析推理能力.4、D【解析】
根據(jù)平面向量的基本定理,若平面內(nèi)任一向量都可以表示成的形式,構(gòu)成一個基底,所以向量不共線.【詳解】因為任一向量,根據(jù)平面向理的基本定理得,所以向量不共線,故A,C不正確.是一個基底,所以不能為零向量,故B不正確.因為不共線,且不能為零向量,所以若,當(dāng)且僅當(dāng),故D正確.故選:D【點睛】本題主要考查平面向量的基本定理,還考查了理解辨析的能力,屬于基礎(chǔ)題.5、C【解析】
由可得,代入求解可得,則,進(jìn)而利用誘導(dǎo)公式求解即可【詳解】由可得,即,所以,因為,所以,則,故選:C【點睛】本題考查垂直向量的應(yīng)用,考查里利用誘導(dǎo)公式求三角函數(shù)值6、D【解析】
由題意先設(shè)出三邊為則由三邊關(guān)系:兩短邊和大于第三邊,分公比大于與公式在小于兩類解出公比的取值范圍,此兩者的并集是函數(shù)的定義域,再由二次函數(shù)的性質(zhì)求出它的值域,選出正確選項.【詳解】解:設(shè)三邊:則由三邊關(guān)系:兩短邊和大于第三邊,即
(1)當(dāng)時,,即,解得;
(2)當(dāng)時,為最大邊,,即,解得,
綜合(1)(2)得:,
又的對稱軸是,故函數(shù)在上是減函數(shù),在上是增函數(shù),
由于時,與時,,
所以函數(shù)的值域為,故選:D.【點睛】本題考查等比數(shù)列的性質(zhì)及二次函數(shù)的值域的求法,解答本題關(guān)鍵是熟練掌握等比數(shù)列的性質(zhì),能利用它建立不等式解出公比的取值范圍得出函數(shù)的定義域,熟練掌握二次函數(shù)的性質(zhì)也很重要,由此類題可以看出,扎實的雙基,嫻熟的基礎(chǔ)知識與公式的記憶是解題的知識保障.7、A【解析】
設(shè),利用勾股定理求出的值即得解.【詳解】如圖,由于,所以設(shè),所以所以.故選:A【點睛】本題主要考查解直角三角形,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.8、B【解析】
三棱錐是正三棱錐,取為外接圓的圓心,連結(jié),則平面,設(shè)為三棱錐外接球的球心,外接球的半徑為,可求出,然后由可求出半徑,進(jìn)而求出外接球的體積.【詳解】由題意,易知三棱錐是正三棱錐,取為外接圓的圓心,連結(jié),則平面,設(shè)為三棱錐外接球的球心.因為,所以.因為,所以.設(shè)三棱錐外接球的半徑為,則,解得,故三棱錐外接球的體積是.故選B.【點睛】本題考查了三棱錐的外接球體積的求法,考查了學(xué)生的空間想象能力與計算求解能力,屬于中檔題.9、B【解析】
根據(jù)冪函數(shù)所過點求得冪函數(shù)解析式,由此求得的表達(dá)式,利用裂項求和法求得的表達(dá)式,解方程求得的值.【詳解】設(shè)冪函數(shù)為,將代入得,所以.所以,所以,故,由解得,故選B.【點睛】本小題主要考查冪函數(shù)解析式的求法,考查裂項求和法,考查方程的思想,屬于基礎(chǔ)題.10、A【解析】
模擬程序運行,觀察變量值,判斷循環(huán)條件可得結(jié)論.【詳解】運行程序框圖,,;,;,,此時滿足條件,跳出循環(huán),輸出的.故選:A.【點睛】本題考查程序框圖,考查循環(huán)結(jié)構(gòu),解題時只要模擬程序運行即可得結(jié)論.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
利用函數(shù)y=Atan(ωx+φ)的周期為,得出結(jié)論.【詳解】函數(shù)y=3tan(3x)的最小正周期是,故答案為:.【點睛】本題主要考查函數(shù)y=Atan(ωx+φ)的周期性,利用了函數(shù)y=Atan(ωx+φ)的周期為.12、【解析】
先利用裂項求和法將數(shù)列的通項化簡,并求出,由此可得出的值.【詳解】,.,因此,,故答案為:.【點睛】本題考查裂項法求和,要理解裂項求和法對數(shù)列通項結(jié)構(gòu)的要求,并熟悉裂項法求和的基本步驟,考查計算能力,屬于中等題.13、-3【解析】
試題分析:∵,∴,又∵,∴,∴,∴考點:本題考查了向量的坐標(biāo)運算點評:熟練運用向量的坐標(biāo)運算是解決此類問題的關(guān)鍵,屬基礎(chǔ)題14、【解析】
空間直角坐標(biāo)系中,關(guān)于原點對稱,每個坐標(biāo)變?yōu)樵瓉淼南喾磾?shù).【詳解】空間直角坐標(biāo)系中,關(guān)于原點對稱,每個坐標(biāo)變?yōu)樵瓉淼南喾磾?shù).點關(guān)于原點的對稱點的坐標(biāo)為故答案為:【點睛】本題考查了空間直角坐標(biāo)系關(guān)于原點對稱,屬于簡單題.15、①②④【解析】
將正方體的表面展開圖還原成正方體,利用正方體中線線、線面以及面面關(guān)系,以及直線與平面所成角的定義和二面角的定義進(jìn)行判斷.【詳解】根據(jù)條件將正方體進(jìn)行還原如下圖所示:對于命題①,由圖形可知,直線與異面,命題①正確;對于命題②,、分別為所在棱的中點,易證四邊形為平行四邊形,所以,,平面,平面,平面,命題②正確;對于命題③,在正方體中,平面,由于四邊形為平行四邊形,,平面.、平面,,.則二面角所成的角為,顯然不是直角,則平面與平面不垂直,命題③錯誤;對于命題④,設(shè)正方體的棱長為,易知平面,則與平面所成的角為,由勾股定理可得,,在中,,即直線與平面所成線面角的正弦值為,命題④正確;對于命題⑤,在正方體中,平面,且,平面.、平面,,,所以,二面角的平面角為,在中,由勾股定理得,,由余弦定理得,命題⑤錯誤.故答案為①②④.【點睛】本題考查命題真假的判斷,考查空間中線線、線面、面面關(guān)系的判斷以及線面角、二面角的計算,判斷時要從空間中有關(guān)線線、線面、面面關(guān)系的平行或垂直的判定或性質(zhì)定理出發(fā)進(jìn)行推導(dǎo),在計算空間角時,則應(yīng)利用空間角的定義來求解,考查推理能力與運算求解能力,屬于中等題.16、【解析】
由已知利用三角形面積公式可求c,進(jìn)而利用余弦定理可求a的值,根據(jù)正弦定理即可計算求解.【詳解】,,面積為,解得,由余弦定理可得:,所以,故答案為:【點睛】本題主要考查了三角形面積公式,余弦定理,正弦定理在解三角形中的應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2);(3).【解析】
(1)識別頻率直方圖,注意其縱軸的意義;(2)在頻率直方圖中平均數(shù)是每組數(shù)據(jù)的組中值乘以頻率,中位數(shù)是排在最中間的數(shù);(3)求出古典概型中的基本事情總數(shù)和具體事件數(shù),利用比值求解.【詳解】(1)由頻率分布直方圖知,年齡在的頻率為所以,名讀書者年齡分布在的人數(shù)為人.(2)名讀書者年齡的平均數(shù)為:設(shè)中位數(shù)為,解之得,即名讀書者年齡的中位數(shù)為歲.(3)年齡在的讀書者有人,記為,;年齡在的讀數(shù)者有人,記為,,,從上述人中選出人,共有如下基本事件:,共有基本事件數(shù)為個,記選取的兩名讀者中恰好有一人年齡在中為事件,則事件包含的基本事件數(shù)為個:故.【點睛】本題考查識別頻率直方圖和樣本的數(shù)字特征,屬于基礎(chǔ)題.18、(1);(2)【解析】(1)已知圓C:(x-1)2(2)當(dāng)弦AB被點P平分時,l⊥PC,直線l的方程為y-2=-119、(1)﹒(2)時,最大車流量輛.【解析】
(1)根據(jù)題意,解不等式即可求得平均速度的范圍.(2)將函數(shù)解析式變形,結(jié)合基本不等式即可求得最值,及取最值時的自變量值.【詳解】(1)車流量(千輛/h)與汽車的平均速度之間的函數(shù)關(guān)系式為:.則,變形可得,解得,即汽車在平均速度應(yīng)在內(nèi).(2)由,、變形可得,當(dāng)且僅當(dāng),即時取等號,故當(dāng)汽車的平均速度,車流量最大,最大車流量為千輛/h.【點睛】本題考查了一元二次不等式的解法,由基本不等式求最值,屬于基礎(chǔ)題.20、(Ⅰ)=2(Ⅱ)【解析】
(I)計算,結(jié)合兩向量的??傻茫唬↖I)利用,把求模轉(zhuǎn)化為向量的數(shù)量積運算.【詳解】解:(Ⅰ)由題意得即又因為所以解得=2.(Ⅱ)因為,所以=16+36-4×2=4
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 農(nóng)產(chǎn)品銷售合同協(xié)議范本
- 招標(biāo)文件房產(chǎn)項目
- 版短期無擔(dān)保個人
- 第三方支付保證金協(xié)議
- 知識產(chǎn)權(quán)顧問合同的爭議解決方法分享
- 學(xué)生健康飲食承諾保證書
- 裝飾拆除改造合同
- 道具采購合同范本中文模板樣式
- 導(dǎo)購員合同協(xié)議的交通補貼
- 幼兒園食品訂購合同范本
- NB-T47003.1-2009鋼制焊接常壓容器(同JB-T4735.1-2009)
- 聚焦高質(zhì)量+探索新高度+-2025屆高考政治復(fù)習(xí)備考策略
- 惠州市惠城區(qū)2022-2023學(xué)年七年級上學(xué)期期末教學(xué)質(zhì)量檢測數(shù)學(xué)試卷
- 北京市西城區(qū)2022-2023學(xué)年七年級上學(xué)期期末英語試題【帶答案】
- ISO45001-2018職業(yè)健康安全管理體系之5-4:“5 領(lǐng)導(dǎo)作用和工作人員參與-5.4 工作人員的協(xié)商和參與”解讀和應(yīng)用指導(dǎo)材料(2024A0-雷澤佳)
- 看圖猜成語共876道題目動畫版
- 小學(xué)二年級上冊數(shù)學(xué)-數(shù)角的個數(shù)專項練習(xí)
- 曲式與作品分析智慧樹知到期末考試答案章節(jié)答案2024年蘭州文理學(xué)院
- 園林設(shè)施維護(hù)方案
- 特種設(shè)備使用單位日管控、周排查、月調(diào)度示范表
- 供應(yīng)鏈成本控制與降本增效
評論
0/150
提交評論