版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
廣西兩校2025屆高一數(shù)學(xué)第二學(xué)期期末預(yù)測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知一個幾何體是由半徑為2的球挖去一個三棱錐得到(三棱錐的頂點(diǎn)均在球面上).若該幾何體的三視圖如圖所示(側(cè)視圖中的四邊形為菱形),則該三棱錐的體積為()A. B. C. D.2.如圖,網(wǎng)格紙上正方形小格邊長為,圖中粗線畫的是某幾何體的三視圖,則該幾何體的表面積等于()A.B.C.D.3.已知等差數(shù)列的公差為2,且是與的等比中項,則等于()A. B. C. D.4.若,則下列不等式中不正確的是()A. B. C. D.5.若是2與8的等比中項,則等于()A. B. C. D.326.已知直線與直線平行,則實數(shù)k的值為()A.-2 B.2 C. D.7.在正方體中,與所成的角為()A.30° B.90° C.60° D.120°8.已知是等差數(shù)列的前項和,公差,,若成等比數(shù)列,則的最小值為()A. B.2 C. D.9.已知函數(shù),若方程在上有且只有三個實數(shù)根,則實數(shù)的取值范圍為()A. B. C. D.10.下列函數(shù)中,在區(qū)間上單調(diào)遞增的是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.在數(shù)列中,若,(),則________12.設(shè),,,則,,從小到大排列為______13.我國南宋著名數(shù)學(xué)家秦九韶發(fā)現(xiàn)了從三角形三邊求三角形面積的“三斜公式”,設(shè)的三個內(nèi)角A、B、C所對的邊分別為a、b、c,面積為S,則“三斜公式”為.若,,則用“三斜公式”求得的面積為______.14.過點(diǎn)作直線與圓相交,則在弦長為整數(shù)的所有直線中,等可能的任取一條直線,則弦長長度不超過14的概率為______________.15.已知,為銳角,且,則__________.16.函數(shù)的定義域記作集合,隨機(jī)地投擲一枚質(zhì)地均勻的正方體骰子(骰子的每個面上分別標(biāo)有點(diǎn)數(shù),,,),記骰子向上的點(diǎn)數(shù)為,則事件“”的概率為________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知的三個內(nèi)角,,的對邊分別為,,,且滿足.(1)求角的大??;(2)若,,,求的長18.記為等差數(shù)列的前項和,已知,.(1)求的通項公式;(2)求,并求的最小值.19.某科研課題組通過一款手機(jī)APP軟件,調(diào)查了某市1000名跑步愛好者平均每周的跑步量(簡稱“周跑量”),得到如下的頻數(shù)分布表周跑量(km/周)人數(shù)100120130180220150603010(1)在答題卡上補(bǔ)全該市1000名跑步愛好者周跑量的頻率分布直方圖:注:請先用鉛筆畫,確定后再用黑色水筆描黑(2)根據(jù)以上圖表數(shù)據(jù)計算得樣本的平均數(shù)為,試求樣本的中位數(shù)(保留一位小數(shù)),并用平均數(shù)、中位數(shù)等數(shù)字特征估計該市跑步愛好者周跑量的分布特點(diǎn)(3)根據(jù)跑步愛好者的周跑量,將跑步愛好者分成以下三類,不同類別的跑者購買的裝備的價格不一樣,如下表:周跑量小于20公里20公里到40公里不小于40公里類別休閑跑者核心跑者精英跑者裝備價格(單位:元)250040004500根據(jù)以上數(shù)據(jù),估計該市每位跑步愛好者購買裝備,平均需要花費(fèi)多少元?20.?dāng)?shù)列滿足,.(1)試求出,,;(2)猜想數(shù)列的通項公式并用數(shù)學(xué)歸納法證明.21.(2012年蘇州17)如圖,在中,已知為線段上的一點(diǎn),且.(1)若,求的值;(2)若,且,求的最大值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】由三視圖可知,三棱錐的體積為2、C【解析】
由三視圖可知該幾何體是一個四棱錐,作出圖形即可求出表面積?!驹斀狻吭搸缀误w為四棱錐,如圖..選C.【點(diǎn)睛】本題考查了三視圖,考查了四棱錐的表面積,考查了學(xué)生的空間想象能力與計算能力,屬于基礎(chǔ)題。3、A【解析】
直接利用等差數(shù)列公式和等比中項公式得到答案.【詳解】是與的等比中項,故即解得:故選:A【點(diǎn)睛】本題考查了等差數(shù)列和等比中項,屬于??碱}型.4、C【解析】
,可得,則根據(jù)不等式的性質(zhì)逐一分析選項,A:,,所以成立;B:,則,根據(jù)基本不等式以及等號成立的條件則可判斷;C:且,根據(jù)可乘性可知結(jié)果;D:,根據(jù)乘方性可判斷結(jié)果.【詳解】A:由題意,不等式,可得,則,,所以成立,所以A是正確的;B:由,則,所以,因為,所以等號不成立,所以成立,所以B是正確的;C:由且,根據(jù)不等式的性質(zhì),可得,所以C不正確;D:由,可得,所以D是正確的,故選:C.【點(diǎn)睛】本題考查不等式的性質(zhì),不等式等號成立的條件,熟記不等式的性質(zhì)是解題的關(guān)鍵,屬于基礎(chǔ)題.5、B【解析】
利用等比中項性質(zhì)列出等式,解出即可?!驹斀狻坑深}意知,,∴.故選B【點(diǎn)睛】本題考查等比中項,屬于基礎(chǔ)題。6、A【解析】
由兩直線平行的可得:,運(yùn)算即可得解.【詳解】解:由兩直線平行的判定可得:,解得,故選:A.【點(diǎn)睛】本題考查利用兩直線平行求參數(shù),屬基礎(chǔ)題.7、C【解析】
把異面直線與所成的角,轉(zhuǎn)化為相交直線與所成的角,利用為正三角形,即可求解.【詳解】連結(jié),則,所以相交直線與所成的角,即為異面直線與所成的角,連結(jié),則是正三角形,所以,即異面直線與所成的角,故選C.【點(diǎn)睛】本題主要考查了空間中異面直線及其所成角的求法,其中根據(jù)異面直線的定義,把異面直線所成的角轉(zhuǎn)化為相交直線所成的角是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.8、A【解析】
由成等比數(shù)列可得數(shù)列的公差,再利用等差數(shù)列的前項和公式及通項公式可得為關(guān)于的式子,再利用對勾函數(shù)求最小值.【詳解】∵成等比數(shù)列,∴,解得:,∴,令,令,其中的整數(shù),∵函數(shù)在遞減,在遞增,∴當(dāng)時,;當(dāng)時,,∴.故選:A.【點(diǎn)睛】本題考查等差數(shù)列與等比數(shù)列的基本量運(yùn)算、函數(shù)的最值,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運(yùn)算求解能力,求解時注意為整數(shù),如果利用基本不等式求解,等號是取不到的.9、A【解析】
先輔助角公式化簡,先求解方程的根的表達(dá)式,再根據(jù)在上有且只有三個實數(shù)根列出對應(yīng)的不等式求解即可.【詳解】.又在上有且只有三個實數(shù)根,故,解得或,即或,.設(shè)直線與在上從做到右的第三個交點(diǎn)為,第四個交點(diǎn)為.則,.故.故實數(shù)的取值范圍為.故選:A【點(diǎn)睛】本題主要考查了根據(jù)三角函數(shù)的根求解參數(shù)范圍的問題,需要根據(jù)題意先求解根的解析式,進(jìn)而根據(jù)區(qū)間中的零點(diǎn)個數(shù)列出區(qū)間端點(diǎn)滿足的關(guān)系式求解即可.屬于中檔題.10、A【解析】
判斷每個函數(shù)在上的單調(diào)性即可.【詳解】解:在上單調(diào)遞增,,和在上都是單調(diào)遞減.故選:A.【點(diǎn)睛】考查冪函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)和反比例函數(shù)的單調(diào)性.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
由題意,得到數(shù)列表示首項為1,公差為2的等差數(shù)列,結(jié)合等差數(shù)列的通項公式,即可求解.【詳解】由題意,數(shù)列中,滿足,(),即(),所以數(shù)列表示首項為1,公差為2的等差數(shù)列,所以.故答案為:【點(diǎn)睛】本題主要考查了等差數(shù)列的定義和通項公式的應(yīng)用,其中解答中熟記等差數(shù)列的定義,合理利用數(shù)列的通項公式求解是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.12、【解析】
首先利用輔助角公式,半角公式,誘導(dǎo)公式分別求出,,的值,然后結(jié)合正弦函數(shù)的單調(diào)性對,,排序即可.【詳解】由題知,,,因為正弦函數(shù)在上單調(diào)遞增,所以.故答案為:.【點(diǎn)睛】本題考查了輔助角公式,半角公式,誘導(dǎo)公式,正弦函數(shù)的單調(diào)區(qū)間,屬于基礎(chǔ)題.13、【解析】
先由,根據(jù)余弦定理,求出,再由,結(jié)合余弦定理,求出,再由題意即可得出結(jié)果.【詳解】因為,所以,因此;又,由余弦定理可得,所以,因此.故答案為【點(diǎn)睛】本題主要考查解三角形,熟記正弦定理與余弦定理即可,屬于??碱}型.14、【解析】
根據(jù)圓的性質(zhì)可求得最長弦和最短弦的長度,從而得到所有弦長為整數(shù)的直線條數(shù),從中找到長度不超過的直線條數(shù),根據(jù)古典概型求得結(jié)果.【詳解】由題意可知,最長弦為圓的直徑:在圓內(nèi)部且圓心到的距離為最短弦長為:弦長為整數(shù)的直線的條數(shù)有:條其中長度不超過的條數(shù)有:條所求概率:本題正確結(jié)果:【點(diǎn)睛】本題考查古典概型概率問題的求解,涉及到過圓內(nèi)一點(diǎn)的最長弦和最短弦的長度的求解;易錯點(diǎn)是忽略圓的對稱性,造成在求解弦長為整數(shù)的直線的條數(shù)時出現(xiàn)丟根的情況.15、【解析】
由題意求得,再利用兩角和的正切公式求得的值,可得的值.【詳解】,為銳角,且,即,.再結(jié)合,則,故答案為.【點(diǎn)睛】本題主要考查兩角和的正切公式的應(yīng)用,屬于基礎(chǔ)題.16、【解析】要使函數(shù)有意義,則且,即且,即,隨機(jī)地投擲一枚質(zhì)地均勻的正方體骰子,記骰子向上的點(diǎn)數(shù)為,則,則事件“”的概率為.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)利用正弦定理化簡已知可得:,結(jié)合兩角和的正弦公式及誘導(dǎo)公式可得:,問題得解.(2)利用可得:,兩邊平方并結(jié)合已知及平面向量數(shù)量積的定義即可得解.【詳解】解:(1)因為,所以由正弦定理可得,即,因為,所以,,,故.(2)由已知得,所以,所以.【點(diǎn)睛】本題主要考查了正弦定理的應(yīng)用及兩角和的正弦公式,還考查了利用平面向量的數(shù)量積解決長度問題,考查轉(zhuǎn)化能力及計算能力,屬于中檔題.18、(1)an=3n–4,(3)Sn=n3–8n,最小值為–1.【解析】分析:(1)根據(jù)等差數(shù)列前n項和公式,求出公差,再代入等差數(shù)列通項公式得結(jié)果,(3)根據(jù)等差數(shù)列前n項和公式得的二次函數(shù)關(guān)系式,根據(jù)二次函數(shù)對稱軸以及自變量為正整數(shù)求函數(shù)最值.詳解:(1)設(shè){an}的公差為d,由題意得3a1+3d=–3.由a1=–7得d=3.所以{an}的通項公式為an=3n–4.(3)由(1)得Sn=n3–8n=(n–4)3–1.所以當(dāng)n=4時,Sn取得最小值,最小值為–1.點(diǎn)睛:數(shù)列是特殊的函數(shù),研究數(shù)列最值問題,可利用函數(shù)性質(zhì),但要注意其定義域為正整數(shù)集這一限制條件.19、(1)見解析;(2)中位數(shù)為29.2,分布特點(diǎn)見解析;(3)3720元【解析】
(1)根據(jù)頻數(shù)和頻率之間的關(guān)系計算,即可得到答案;(2)根據(jù)頻率分布直方圖利用中位數(shù)兩邊頻率相等,列方程求出中位數(shù)的值,進(jìn)而得出結(jié)論;(3)根據(jù)頻率分布直方圖求出休閑跑者,核心跑者,精英跑者分別人數(shù),進(jìn)而求出平均值.【詳解】(1)補(bǔ)全該市1000名跑步愛好者周跑量的頻率分布直方圖,如下:(2)中位數(shù)的估計值:由,所以中位數(shù)位于區(qū)間中,設(shè)中位數(shù)為,則,解得,因為,所以估計該市跑步愛好者多數(shù)人的周跑量多于樣本的平均數(shù).(3)依題意可知,休閑跑者共有人,核心跑者人,精英跑者人,所以該市每位跑步愛好者購買裝備,平均需要元.【點(diǎn)睛】本題主要考查了平均數(shù)、中位數(shù)的求法,以及頻率分布直方圖的性質(zhì)等相應(yīng)知識的綜合應(yīng)用,著重考查了化簡能力,推理計算能力,以及數(shù)形結(jié)合思想的應(yīng)用,屬于基礎(chǔ)題.20、(1),,(2),證
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 化妝品銷售合同書年
- 機(jī)械設(shè)備購銷合同協(xié)議書范本
- 房屋建筑工程保修合同書范本
- 通信工程承包合同模板
- 蘇州室內(nèi)裝修合同范本
- 鑄件加工合同范本
- 銷售員合同協(xié)議書
- 數(shù)據(jù)產(chǎn)業(yè)能否促進(jìn)經(jīng)濟(jì)快速發(fā)展
- 課程游戲化背景下師幼互動模式的創(chuàng)新研究
- 檔案敘事與共情:理論闡釋與實證分析
- 復(fù)工復(fù)產(chǎn)消防安全培訓(xùn)
- 城市道路交通安全評價標(biāo)準(zhǔn) DG-TJ08-2407-2022
- 統(tǒng)編版高中政治選擇性必修2《法律與生活》知識點(diǎn)復(fù)習(xí)提綱詳細(xì)版
- 急腹癥的診斷思路
- 培訓(xùn)機(jī)構(gòu)安全隱患排查記錄(帶附件)
- 2024小說推文行業(yè)白皮書
- 研究性成果及創(chuàng)新性成果怎么寫(通用6篇)
- 特殊感染手術(shù)管理考試試題及答案
- 旅館治安管理制度及突發(fā)事件應(yīng)急方案三篇
- 土地增值稅清算底稿中稅協(xié)版
- 小區(qū)綠化養(yǎng)護(hù)方案及報價(三篇)
評論
0/150
提交評論