版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
安徽省淮南五中2023-2024學(xué)年高一數(shù)學(xué)第二學(xué)期期末考試試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知點(diǎn),直線方程為,且直線與線段相交,求直線的斜率k的取值范圍為()A.或 B.或C. D.2.已知某7個數(shù)據(jù)的平均數(shù)為5,方差為4,現(xiàn)又加入一個新數(shù)據(jù)5,此時這8個數(shù)的方差為()A. B.3 C. D.43.設(shè)二次函數(shù)在區(qū)間上單調(diào)遞減,且,則實(shí)數(shù)的取值范圍是()A.(-∞,0] B.[2,+∞) C.(-∞,0]∪[2,+∞) D.[0,2]4.若直線與直線互相平行,則的值等于()A.0或或3 B.0或3 C.0或 D.或35.漢朝時,張衡得出圓周率的平方除以16等于,如圖,網(wǎng)格紙上的小正方形的邊長為1,粗實(shí)線畫出的是某幾何體的三視圖,俯視圖中的曲線為圓,利用張衡的結(jié)論可得該幾何體的體積為()A.32 B.40 C. D.6.若直線與直線平行,則A. B. C. D.7.南北朝數(shù)學(xué)家祖暅在推導(dǎo)球的體積公式時構(gòu)造了一個中間空心的幾何體,經(jīng)后繼學(xué)者改進(jìn)后這個中間空心的幾何體其三視圖如圖所示,下列那個值最接近該幾何體的體積()A.8 B.12 C.16 D.248.已知樣本的平均數(shù)是10,方差是2,則的值為()A.88 B.96 C.108 D.1109.函數(shù)的單調(diào)遞增區(qū)間是()A. B. C. D.10.已知是函數(shù)的兩個零點(diǎn),則()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.直線與圓的位置關(guān)系是______.12.設(shè)為三條不同的直線,為兩個不同的平面,給出下列四個判斷:①若則;②若是在內(nèi)的射影,,則;③底面是等邊三角形,側(cè)面都是等腰三角形的三棱錐是正三棱錐;④若球的表面積擴(kuò)大為原來的16倍,則球的體積擴(kuò)大為原來的32倍;其中正確的為___________.13.三棱錐中,分別為的中點(diǎn),記三棱錐的體積為,的體積為,則____________14.在空間直角坐標(biāo)系中,三棱錐的各頂點(diǎn)都在一個半徑為的球面上,為球心,,,,,則球的體積與三棱錐的體積之比是_____.15.給出下列語句:①若為正實(shí)數(shù),,則;②若為正實(shí)數(shù),,則;③若,則;④當(dāng)時,的最小值為,其中結(jié)論正確的是___________.16.如圖甲是第七屆國際數(shù)學(xué)教育大會(簡稱)的會徽圖案,會徽的主體圖案是由如圖乙的一連串直角三角形演化而成的,其中,如果把圖乙中的直角三角形繼續(xù)作下去,記的長度構(gòu)成數(shù)列,則此數(shù)列的通項(xiàng)公式為_____.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(1)求函數(shù)的最小正周期和單調(diào)遞減區(qū)間;(2)求函數(shù)在上的最大值和最小值.18.如圖,當(dāng)甲船位于處時獲悉,在其正東方向相距20海里的處有一艘漁船遇險(xiǎn)等待營救.甲船立即前往救援,同時把消息告知在甲船的南偏西30°,相距10海里處的乙船,試問乙船應(yīng)朝北偏東多少度的方向沿直線前往處救援?(角度精確到1°,參考數(shù)據(jù):,)19.在三棱錐中,平面平面,,,分別是棱,上的點(diǎn)(1)為的中點(diǎn),求證:平面平面.(2)若,平面,求的值.20.在中,,且邊上的中線長為,(1)求角的大??;(2)求的面積.21.設(shè)數(shù)列滿足.(1)求的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解析】
先求出線段的方程,得出,在直線的方程中得到,將代入的表達(dá)式,利用不等式的性質(zhì)求出的取值范圍.【詳解】易求得線段的方程為,得,由直線的方程得,當(dāng)時,,此時,;當(dāng)時,,此時,.因此,實(shí)數(shù)的取值范圍是或,故選A.【點(diǎn)睛】本題考查斜率取值范圍的計(jì)算,可以利用數(shù)形結(jié)合思想,觀察傾斜角的變化得出斜率的取值范圍,也可以利用參變量分離,得出斜率的表達(dá)式,利用不等式的性質(zhì)得出斜率的取值范圍,考查計(jì)算能力,屬于中等題.2、C【解析】
由平均數(shù)公式求得原有7個數(shù)的和,可得新的8個數(shù)的平均數(shù),由于新均值和原均值相等,因此由方差公式可得新方差.【詳解】因?yàn)?個數(shù)據(jù)的平均數(shù)為5,方差為4,現(xiàn)又加入一個新數(shù)據(jù)5,此時這8個數(shù)的平均數(shù)為,方差為,由平均數(shù)和方差的計(jì)算公式可得,.故選:C.【點(diǎn)睛】本題考查均值與方差的概念,掌握均值與方差的計(jì)算公式是解題關(guān)鍵.3、D【解析】
求出導(dǎo)函數(shù),題意說明在上恒成立(不恒等于0),從而得,得開口方向,及函數(shù)單調(diào)性,再由函數(shù)性質(zhì)可解.【詳解】二次函數(shù)在區(qū)間上單調(diào)遞減,則,,所以,即函數(shù)圖象的開口向上,對稱軸是直線.所以f(0)=f(2),則當(dāng)時,有.【點(diǎn)睛】實(shí)際上對二次函數(shù),當(dāng)時,函數(shù)在遞減,在上遞增,當(dāng)時,函數(shù)在遞增,在上遞減.4、D【解析】
根據(jù)直線的平行關(guān)系,列方程解參數(shù)即可.【詳解】由題:直線與直線互相平行,所以,,解得:或.經(jīng)檢驗(yàn),當(dāng)或時,兩條直線均平行.故選:D【點(diǎn)睛】此題考查根據(jù)直線平行關(guān)系求解參數(shù)的取值,需要熟記公式,注意考慮直線重合的情況.5、C【解析】
將三視圖還原,即可求組合體體積【詳解】將三視圖還原成如圖幾何體:半個圓柱和半個圓錐的組合體,底面半徑為2,高為4,則體積為,利用張衡的結(jié)論可得故選C【點(diǎn)睛】本題考查三視圖,正確還原,熟記圓柱圓錐的體積是關(guān)鍵,是基礎(chǔ)題6、A【解析】由題意,直線,則,解得,故選A.7、C【解析】
由三視圖確定此幾何體的結(jié)構(gòu),圓柱的體積減去同底同高的圓錐的體積即為所求.【詳解】該幾何體是一個圓柱挖掉一個同底同高的圓錐,圓柱底為2,高為2,所求體積為,所以C選項(xiàng)最接近該幾何體的體積.故選:C【點(diǎn)睛】本題考查由三視圖確定幾何體的結(jié)構(gòu)及求其體積,屬于基礎(chǔ)題.8、B【解析】
根據(jù)平均數(shù)和方差公式列方程組,得出和的值,再由可求得的值.【詳解】由于樣本的平均數(shù)為,則有,得,由于樣本的方差為,有,得,即,,因此,,故選B.【點(diǎn)睛】本題考查利用平均數(shù)與方差公式求參數(shù),解題的關(guān)鍵在于平均數(shù)與方差公式的應(yīng)用,考查計(jì)算能力,屬于中等題.9、A【解析】
先求出所有的單調(diào)遞增區(qū)間,然后與取交集即可.【詳解】因?yàn)榱畹茫核缘膯握{(diào)遞增區(qū)間是因?yàn)?,所以即函?shù)的單調(diào)遞增區(qū)間是故選:A【點(diǎn)睛】求形如的單調(diào)區(qū)間時,一般利用復(fù)合函數(shù)的單調(diào)性原理“同增異減”來求出此函數(shù)的單調(diào)區(qū)間,當(dāng)時,需要用誘導(dǎo)公式將函數(shù)轉(zhuǎn)化為.10、A【解析】
在同一直角坐標(biāo)系中作出與的圖象,設(shè)兩函數(shù)圖象的交點(diǎn),依題意可得,利用對數(shù)的運(yùn)算性質(zhì)結(jié)合圖象即可得答案.【詳解】解:,在同一直角坐標(biāo)系中作出與的圖象,
設(shè)兩函數(shù)圖象的交點(diǎn),
則,即,
又,
所以,,即,
所以①;
又,故,即②,由①②得:,
故選:A.【點(diǎn)睛】本題考查根的存在性及根的個數(shù)判斷,依題意可得是關(guān)鍵,考查作圖能力與運(yùn)算求解能力,屬于難題.二、填空題:本大題共6小題,每小題5分,共30分。11、相交【解析】
由直線系方程可得直線過定點(diǎn),進(jìn)而可得點(diǎn)在圓內(nèi)部,即可得到位置關(guān)系.【詳解】化直線方程為,令,解得,所以直線過定點(diǎn),又圓的圓心坐標(biāo)為,半徑,而,所以點(diǎn)在圓內(nèi)部,故直線與圓的位置關(guān)系是相交.故答案為:相交.【點(diǎn)睛】本題考查直線與圓位置關(guān)系的判斷,考查直線系方程的應(yīng)用,屬于基礎(chǔ)題.12、①②【解析】
對四個命題分別進(jìn)行判斷即可得到結(jié)論【詳解】①若,垂足為,與確定平面,,則,,則,,則,故,故正確②若,是在內(nèi)的射影,,根據(jù)三垂線定理,可得,故正確③底面是等邊三角形,側(cè)面都是有公共頂點(diǎn)的等腰三角形的三棱錐是正三棱錐,故不正確④若球的表面積擴(kuò)大為原來的倍,則半徑擴(kuò)大為原來的倍,則球的體積擴(kuò)大為原來的倍,故不正確其中正確的為①②【點(diǎn)睛】本題主要考查了空間中直線與平面之間的位置關(guān)系、球的體積等知識點(diǎn),數(shù)量掌握各知識點(diǎn)然后對其進(jìn)行判斷,較為基礎(chǔ)。13、【解析】
由已知設(shè)點(diǎn)到平面距離為,則點(diǎn)到平面距離為,所以,考點(diǎn):幾何體的體積.14、【解析】
首先根據(jù)坐標(biāo)求出三棱錐的體積,再計(jì)算出球的體積即可.【詳解】有題知建立空間直角坐標(biāo)系,如圖所示由圖知:平面,...故答案為:【點(diǎn)睛】本題主要考查三棱錐的外接球,根據(jù)題意建立空間直角坐標(biāo)系為解題的關(guān)鍵,屬于中檔題.15、①③.【解析】
利用作差法可判斷出①正確;通過反例可排除②;根據(jù)不等式的性質(zhì)可知③正確;根據(jù)的范圍可求得的范圍,根據(jù)對號函數(shù)圖象可知④錯誤.【詳解】①,為正實(shí)數(shù),,即,可知①正確;②若,,,則,可知②錯誤;③若,可知,則,即,可知③正確;④當(dāng)時,,由對號函數(shù)圖象可知:,可知④錯誤.本題正確結(jié)果:①③【點(diǎn)睛】本題考查不等式性質(zhì)的應(yīng)用、作差法比較大小問題、利用對號函數(shù)求解最值的問題,屬于常規(guī)題型.16、【解析】
由圖可知,由勾股定理可得,利用等差數(shù)列的通項(xiàng)公式求解即可.【詳解】根據(jù)圖形,因?yàn)槎际侵苯侨切危?是以1為首項(xiàng),以1為公差的等差數(shù)列,,,故答案為.【點(diǎn)睛】本題主要考查歸納推理的應(yīng)用,等差數(shù)列的定義與通項(xiàng)公式,以及數(shù)形結(jié)合思想的應(yīng)用,意在考查綜合應(yīng)用所學(xué)知識解答問題的能力,屬于與中檔題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)5;-2【解析】
(1)根據(jù)二倍角公式和輔助角公式化簡即可(2)由求出的范圍,再根據(jù)函數(shù)圖像求最值即可【詳解】(1),,令,即單減區(qū)間為;(2)由,當(dāng)時,的最小值為:-2;當(dāng)時,的最大值為:5【點(diǎn)睛】本題考查三角函數(shù)解析式的化簡,函數(shù)基本性質(zhì)的求解(周期、單調(diào)性、在給定區(qū)間的最值),屬于中檔題18、乙船應(yīng)朝北偏東約的方向沿直線前往處救援.【解析】
根據(jù)題意,求得,利用余弦定理求得的長,在中利用正弦定理求得,根據(jù)題目所給參考數(shù)據(jù)求得乙船行駛方向.【詳解】解:由已知,則,在中,由余弦定理,得,∴海里.在中,由正弦定理,有,解得,則,故乙船應(yīng)朝北偏東約的方向沿直線前往處救援.【點(diǎn)睛】本小題主要考查解三角形在實(shí)際生活中的應(yīng)用,考查正弦定理、余弦定理解三角形,屬于基礎(chǔ)題.19、(1)證明見解析;(2)【解析】
(1)根據(jù)等腰三角形的性質(zhì),證得,由面面垂直的性質(zhì)定理,證得平面,進(jìn)而證得平面平面.(2)根據(jù)線面平行的性質(zhì)定理,證得,平行線分線段成比例,由此求得的值.【詳解】(1),為的中點(diǎn),所以.又因?yàn)槠矫嫫矫?,平面平面,且平面,所以平面,又平面,所以平面平?(2)∵平面,面,面面∴,∴.【點(diǎn)睛】本小題主要考查面面垂直的判定定理和性質(zhì)定理,考查線面平行的性質(zhì)定理,考查空間想象能力和邏輯推理能力,屬于中檔題.20、(Ⅰ);(Ⅱ).【解析】
(1)本題可根據(jù)三角函數(shù)相關(guān)公式將化簡為,然后根據(jù)即可求出角的大??;(2)本題首先可設(shè)的中點(diǎn)為,然后根據(jù)向量的平行四邊形法則得到,再然后通過化簡計(jì)算即可求得,最后通過三角形面積公式即可得出結(jié)果.【詳解】(1)由正弦定理邊角互換可得,所以.因?yàn)?,所以,即,即,整理?因?yàn)?,所以,所以,即,所?因?yàn)?,所以,即?2)設(shè)的中點(diǎn)為,根據(jù)向量的平行四邊形法則可知所以,即,因?yàn)?,,所以,解得(?fù)值舍去).所以.【點(diǎn)睛】本題考查三角恒等變換公式及解三角形相關(guān)公式的應(yīng)用,考查了向量的平行四邊形法則以及向量的運(yùn)算,考查了化歸與轉(zhuǎn)化思想,體現(xiàn)了綜合性,是難題.21、(1);(1).【解析】
(1)在中,將代得:,由兩式作商得:,問題得解.(1)利用(1)中結(jié)果求得,分組求和,再利用等差數(shù)列前項(xiàng)和公式及乘公比錯位相減法分別求和即可得解.【詳解】(1)由n=1得,因?yàn)?,?dāng)n≥1時,,由兩式作商得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中山火炬職業(yè)技術(shù)學(xué)院《建筑識圖與制圖》2023-2024學(xué)年第一學(xué)期期末試卷
- 鄭州職業(yè)技術(shù)學(xué)院《檢測技術(shù)與信號處理》2023-2024學(xué)年第一學(xué)期期末試卷
- 長沙衛(wèi)生職業(yè)學(xué)院《信息安全理論與技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 云南農(nóng)業(yè)職業(yè)技術(shù)學(xué)院《中外體育文學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 海洋養(yǎng)殖科技革新模板
- 職業(yè)導(dǎo)論-房地產(chǎn)經(jīng)紀(jì)人《職業(yè)導(dǎo)論》名師預(yù)測卷2
- 人教版四年級數(shù)學(xué)下冊第七單元綜合卷(含答案)
- 2024-2025學(xué)年吉林省吉林市蛟河實(shí)驗(yàn)中學(xué)高二(上)期末數(shù)學(xué)試卷(含答案)
- 煙臺幼兒師范高等??茖W(xué)?!端囆g(shù)家與風(fēng)格》2023-2024學(xué)年第一學(xué)期期末試卷
- 二零二五年度高端餐飲企業(yè)雇傭司機(jī)專業(yè)服務(wù)合同3篇
- 《中華人民共和國機(jī)動車駕駛?cè)丝颇恳豢荚囶}庫》
- 2024年VB程序設(shè)計(jì):從入門到精通
- 2024年故宮文化展覽計(jì)劃:課件創(chuàng)意與呈現(xiàn)
- 公共交通乘客投訴管理制度
- 不銹鋼伸縮縫安裝施工合同
- 水土保持監(jiān)理總結(jié)報(bào)告
- Android移動開發(fā)基礎(chǔ)案例教程(第2版)完整全套教學(xué)課件
- 醫(yī)保DRGDIP付費(fèi)基礎(chǔ)知識醫(yī)院內(nèi)培訓(xùn)課件
- 專題12 工藝流程綜合題- 三年(2022-2024)高考化學(xué)真題分類匯編(全國版)
- DB32T-經(jīng)成人中心靜脈通路裝置采血技術(shù)規(guī)范
- TDALN 033-2024 學(xué)生飲用奶安全規(guī)范入校管理標(biāo)準(zhǔn)
評論
0/150
提交評論