廣東省四會市達標名校中考數學考試模擬沖刺卷及答案解析_第1頁
廣東省四會市達標名校中考數學考試模擬沖刺卷及答案解析_第2頁
廣東省四會市達標名校中考數學考試模擬沖刺卷及答案解析_第3頁
廣東省四會市達標名校中考數學考試模擬沖刺卷及答案解析_第4頁
廣東省四會市達標名校中考數學考試模擬沖刺卷及答案解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

廣東省四會市達標名校中考數學考試模擬沖刺卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.如圖,一艘海輪位于燈塔P的南偏東45°方向,距離燈塔60nmile的A處,它沿正北方向航行一段時間后,到達位于燈塔P的北偏東30°方向上的B處,這時,B處與燈塔P的距離為()A.60nmile B.60nmile C.30nmile D.30nmile2.如圖,小穎為測量學校旗桿AB的高度,她在E處放置一塊鏡子,然后退到C處站立,剛好從鏡子中看到旗桿的頂部B.已知小穎的眼睛D離地面的高度CD=1.5m,她離鏡子的水平距離CE=0.5m,鏡子E離旗桿的底部A處的距離AE=2m,且A、C、E三點在同一水平直線上,則旗桿AB的高度為()A.4.5m B.4.8m C.5.5m D.6m3.點A(x1,y1),B(x2,y2),C(x3,y3)在反比例函數y=的圖象上,若x1<x2<0<x3,則y1,y2,y3的大小關系是()A.y1<y2<y3 B.y2<y3<y1 C.y3<y2<y1 D.y2<y1<y34.已知m=,n=,則代數式的值為()A.3 B.3 C.5 D.95.一個容量為50的樣本,在整理頻率分布時,將所有頻率相加,其和是()A.50B.0.02C.0.1D.16.已知拋物線c:y=x2+2x﹣3,將拋物線c平移得到拋物線c′,如果兩條拋物線,關于直線x=1對稱,那么下列說法正確的是()A.將拋物線c沿x軸向右平移個單位得到拋物線c′ B.將拋物線c沿x軸向右平移4個單位得到拋物線c′C.將拋物線c沿x軸向右平移個單位得到拋物線c′ D.將拋物線c沿x軸向右平移6個單位得到拋物線c′7.在,,,這四個數中,比小的數有()個.A. B. C. D.8.方程的解是A.3 B.2 C.1 D.09.如圖,△ABC是⊙O的內接三角形,AC是⊙O的直徑,∠C=50°,∠ABC的平分線BD交⊙O于點D,則∠BAD的度數是()A.45° B.85° C.90° D.95°10.如圖,在△ABC中,∠C=90°,點D在AC上,DE∥AB,若∠CDE=165°,則∠B的度數為()A.15° B.55° C.65° D.75°二、填空題(本大題共6個小題,每小題3分,共18分)11.拋物線(為非零實數)的頂點坐標為_____________.12.在一個不透明的袋子中裝有除顏色外其他均相同的3個紅球和2個白球,從中任意摸出一個球,則摸出白球的概率是_____.13.分解因式:a2b?8ab+16b=_____.14.“若實數a,b,c滿足a<b<c,則a+b<c”,能夠說明該命題是假命題的一組a,b,c的值依次為_____.15.二次根式中的字母a的取值范圍是_____.16.當關于x的一元二次方程ax2+bx+c=0有實數根,且其中一個根為另一個根的2倍時,稱之為“倍根方程”.如果關于x的一元二次方程x2+(m﹣2)x﹣2m=0是“倍根方程”,那么m的值為_____.三、解答題(共8題,共72分)17.(8分)計算:4sin30°+(1﹣)0﹣|﹣2|+()﹣218.(8分)()如圖①已知四邊形中,,BC=b,,求:①對角線長度的最大值;②四邊形的最大面積;(用含,的代數式表示)()如圖②,四邊形是某市規(guī)劃用地的示意圖,經測量得到如下數據:,,,,請你利用所學知識探索它的最大面積(結果保留根號)19.(8分)已知關于x的方程x2﹣6mx+9m2﹣9=1.(1)求證:此方程有兩個不相等的實數根;(2)若此方程的兩個根分別為x1,x2,其中x1>x2,若x1=2x2,求m的值.20.(8分)計算:﹣22﹣+|1﹣4sin60°|21.(8分)如圖,在△ABC中,∠C=90°,∠BAC的平分線交BC于點D,點O在AB上,以點O為圓心,OA為半徑的圓恰好經過點D,分別交AC、AB于點E.F.試判斷直線BC與⊙O的位置關系,并說明理由;若BD=23,BF=2,求⊙O的半徑.22.(10分)每到春夏交替時節(jié),雌性楊樹會以滿天飛絮的方式來傳播下一代,漫天飛舞的楊絮易引發(fā)皮膚病、呼吸道疾病等,給人們造成困擾,為了解市民對治理楊絮方法的贊同情況,某課題小組隨機調查了部分市民(問卷調查表如表所示),并根據調查結果繪制了如下尚不完整的統(tǒng)計圖.治理楊絮一一您選哪一項?(單選)A.減少楊樹新增面積,控制楊樹每年的栽種量B.調整樹種結構,逐漸更換現有楊樹C.選育無絮楊品種,并推廣種植D.對雌性楊樹注射生物干擾素,避免產生飛絮E.其他根據以上統(tǒng)計圖,解答下列問題:(1)本次接受調查的市民共有人;(2)扇形統(tǒng)計圖中,扇形E的圓心角度數是;(3)請補全條形統(tǒng)計圖;(4)若該市約有90萬人,請估計贊同“選育無絮楊品種,并推廣種植”的人數.23.(12分)為了解某校學生的身高情況,隨機抽取該校男生、女生進行抽樣調查.已知抽取的樣本中男生、女生的人數相同,利用所得數據繪制如下統(tǒng)計圖表:組別身高Ax<160B160≤x<165C165≤x<170D170≤x<175Ex≥175根據圖表提供的信息,回答下列問題:(1)樣本中,男生的身高眾數在組,中位數在組;(2)樣本中,女生身高在E組的有人,E組所在扇形的圓心角度數為;(3)已知該校共有男生600人,女生480人,請估讓身高在165≤x<175之間的學生約有多少人?24.已知如圖①Rt△ABC和Rt△EDC中,∠ACB=∠ECD=90°,A,C,D在同一條直線上,點M,N,F分別為AB,ED,AD的中點,∠B=∠EDC=45°,(1)求證MF=NF(2)當∠B=∠EDC=30°,A,C,D在同一條直線上或不在同一條直線上,如圖②,圖③這兩種情況時,請猜想線段MF,NF之間的數量關系.(不必證明)

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

如圖,作PE⊥AB于E.在Rt△PAE中,∵∠PAE=45°,PA=60nmile,∴PE=AE=×60=nmile,在Rt△PBE中,∵∠B=30°,∴PB=2PE=nmile.故選B.2、D【解析】

根據題意得出△ABE∽△CDE,進而利用相似三角形的性質得出答案.【詳解】解:由題意可得:AE=2m,CE=0.5m,DC=1.5m,∵△ABC∽△EDC,∴DCAB即1.5AB解得:AB=6,故選:D.【點睛】本題考查的是相似三角形在實際生活中的應用,根據題意得出△ABE∽△CDE是解答此題的關鍵.3、D【解析】

先根據反比例函數的解析式判斷出函數圖象所在的象限,再根據x1<x2<0<x1,判斷出三點所在的象限,再根據函數的增減性即可得出結論.【詳解】∵反比例函數y=中,k=1>0,∴此函數圖象的兩個分支在一、三象限,∵x1<x2<0<x1,∴A、B在第三象限,點C在第一象限,∴y1<0,y2<0,y1>0,∵在第三象限y隨x的增大而減小,∴y1>y2,∴y2<y1<y1.故選D.【點睛】本題考查的是反比例函數圖象上點的坐標特點,先根據題意判斷出函數圖象所在的象限及三點所在的象限是解答此題的關鍵.4、B【解析】

由已知可得:,=.【詳解】由已知可得:,原式=故選:B【點睛】考核知識點:二次根式運算.配方是關鍵.5、D【解析】所有小組頻數之和等于數據總數,所有頻率相加等于1.6、B【解析】∵拋物線C:y=x2+2x﹣3=(x+1)2﹣4,∴拋物線對稱軸為x=﹣1.∴拋物線與y軸的交點為A(0,﹣3).則與A點以對稱軸對稱的點是B(2,﹣3).若將拋物線C平移到C′,并且C,C′關于直線x=1對稱,就是要將B點平移后以對稱軸x=1與A點對稱.則B點平移后坐標應為(4,﹣3),因此將拋物線C向右平移4個單位.故選B.7、B【解析】

比較這些負數的絕對值,絕對值大的反而小.【詳解】在﹣4、﹣、﹣1、﹣這四個數中,比﹣2小的數是是﹣4和﹣.故選B.【點睛】本題主要考查負數大小的比較,解題的關鍵時負數比較大小時,絕對值大的數反而小.8、A【解析】試題分析:分式方程去分母轉化為整式方程,求出整式方程的解得到x的值,經檢驗即可得到分式方程的解:去分母得:2x=3x﹣3,解得:x=3,經檢驗x=3是分式方程的解.故選A.9、B【解析】

解:∵AC是⊙O的直徑,∴∠ABC=90°,∵∠C=50°,∴∠BAC=40°,∵∠ABC的平分線BD交⊙O于點D,∴∠ABD=∠DBC=45°,∴∠CAD=∠DBC=45°,∴∠BAD=∠BAC+∠CAD=40°+45°=85°,故選B.【點睛】本題考查圓周角定理;圓心角、弧、弦的關系.10、D【解析】

根據鄰補角定義可得∠ADE=15°,由平行線的性質可得∠A=∠ADE=15°,再根據三角形內角和定理即可求得∠B=75°.【詳解】解:∵∠CDE=165°,∴∠ADE=15°,∵DE∥AB,∴∠A=∠ADE=15°,∴∠B=180°﹣∠C﹣∠A=180°﹣90°﹣15°=75°,故選D.【點睛】本題考查了平行線的性質、三角形內角和定理等,熟練掌握平行線的性質以及三角形內角和定理是解題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】【分析】將拋物線的解析式由一般式化為頂點式,即可得到頂點坐標.【詳解】y=mx2+2mx+1=m(x2+2x)+1=m(x2+2x+1-1)+1=m(x+1)2+1-m,所以拋物線的頂點坐標為(-1,1-m),故答案為(-1,1-m).【點睛】本題考查了拋物線的頂點坐標,把拋物線的解析式轉化為頂點式是解題的關鍵.12、【解析】

根據隨機事件概率大小的求法,找準兩點:①符合條件的情況數目;②全部情況的總數.二者的比值就是其發(fā)生的概率的大?。驹斀狻拷猓骸咴谝粋€不透明的袋子中裝有除顏色外其他均相同的3個紅球和2個白球,∴從中任意摸出一個球,則摸出白球的概率是.故答案為:.【點睛】本題考查概率的求法與運用,一般方法為:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現m種結果,那么事件A的概率P(A)=13、b(a﹣4)1【解析】

先提公因式,再用完全平方公式進行因式分解.【詳解】解:a1b-8ab+16b=b(a1-8a+16)=b(a-4)1.【點睛】本題考查了提公因式與公式法的綜合運用,熟練運用公式法分解因式是本題的關鍵.14、答案不唯一,如1,2,3;【解析】分析:設a,b,c是任意實數.若a<b<c,則a+b<c”是假命題,則若a<b<c,則a+b≥c”是真命題,舉例即可,本題答案不唯一詳解:設a,b,c是任意實數.若a<b<c,則a+b<c”是假命題,則若a<b<c,則a+b≥c”是真命題,可設a,b,c的值依次1,2,3,(答案不唯一),故答案為1,2,3.點睛:本題考查了命題的真假,舉例說明即可,15、a≥﹣1.【解析】

根據二次根式的被開方數為非負數,可以得出關于a的不等式,繼而求得a的取值范圍.【詳解】由分析可得,a+1≥0,解得:a≥﹣1.【點睛】熟練掌握二次根式被開方數為非負數是解答本題的關鍵.16、-1或-4【解析】分析:設“倍根方程”的一個根為,則另一根為,由一元二次方程根與系數的關系可得,由此可列出關于m的方程,解方程即可求得m的值.詳解:由題意設“倍根方程”的一個根為,另一根為,則由一元二次方程根與系數的關系可得:,∴,∴,化簡整理得:,解得.故答案為:-1或-4.點睛:本題解題的關鍵是熟悉一元二次方程根與系數的關系:若一元二次方程的兩根分別為,則.三、解答題(共8題,共72分)17、1.【解析】

按照實數的運算順序進行運算即可.【詳解】原式=1.【點睛】本題考查實數的運算,主要考查零次冪,負整數指數冪,特殊角的三角函數值以及絕對值,熟練掌握各個知識點是解題的關鍵.18、(1)①;②;(2)150+475+475.【解析】

(1)①由條件可知AC為直徑,可知BD長度的最大值為AC的長,可求得答案;②連接AC,求得AD2+CD2,利用不等式的性質可求得AD?CD的最大值,從而可求得四邊形ABCD面積的最大值;(2)連接AC,延長CB,過點A做AE⊥CB交CB的延長線于E,可先求得△ABC的面積,結合條件可求得∠D=45°,且A、C、D三點共圓,作AC、CD中垂線,交點即為圓心O,當點D與AC的距離最大時,△ACD的面積最大,AC的中垂線交圓O于點D',交AC于F,FD'即為所求最大值,再求得

△ACD′的面積即可.【詳解】(1)①因為∠B=∠D=90°,所以四邊形ABCD是圓內接四邊形,AC為圓的直徑,則BD長度的最大值為AC,此時BD=,②連接AC,則AC2=AB2+BC2=a2+b2=AD2+CD2,S△ACD=ADCD≤(AD2+CD2)=(a2+b2),所以四邊形ABCD的最大面積=(a2+b2)+ab=;(2)如圖,連接AC,延長CB,過點A作AE⊥CB交CB的延長線于E,因為AB=20,∠ABE=180°-∠ABC=60°,所以AE=ABsin60°=10,EB=ABcos60°=10,S△ABC=AEBC=150,因為BC=30,所以EC=EB+BC=40,AC==10,因為∠ABC=120°,∠BAD+∠BCD=195°,所以∠D=45°,則△ACD中,∠D為定角,對邊AC為定邊,所以,A、C、D點在同一個圓上,做AC、CD中垂線,交點即為圓O,如圖,當點D與AC的距離最大時,△ACD的面積最大,AC的中垂線交圓O于點D’,交AC于F,FD’即為所求最大值,連接OA、OC,∠AOC=2∠AD’C=90°,OA=OC,所以△AOC,△AOF等腰直角三角形,AO=OD’=5,OF=AF==5,D’F=5+5,S△ACD’=ACD’F=5×(5+5)=475+475,所以Smax=S△ABC+S△ACD=150+475+475.【點睛】本題為圓的綜合應用,涉及知識點有圓周角定理、不等式的性質、解直角三角形及轉化思想等.在(1)中注意直徑是最長的弦,在(2)中確定出四邊形ABCD面積最大時,D點的位置是解題的關鍵.本題考查知識點較多,綜合性很強,計算量很大,難度適中.19、(1)見解析;(2)m=2【解析】

(1)根據一元二次方程根的判別式進行分析解答即可;(2)用“因式分解法”解原方程,求得其兩根,再結合已知條件分析解答即可.【詳解】(1)∵在方程x2﹣6mx+9m2﹣9=1中,△=(﹣6m)2﹣4(9m2﹣9)=26m2﹣26m2+26=26>1.∴方程有兩個不相等的實數根;(2)關于x的方程:x2﹣6mx+9m2﹣9=1可化為:[x﹣(2m+2)][x﹣(2m﹣2)]=1,解得:x=2m+2和x=2m-2,∵2m+2>2m﹣2,x1>x2,∴x1=2m+2,x2=2m﹣2,又∵x1=2x2,∴2m+2=2(2m﹣2)解得:m=2.【點睛】(1)熟知“一元二次方程根的判別式:在一元二次方程中,當時,原方程有兩個不相等的實數根,當時,原方程有兩個相等的實數根,當時,原方程沒有實數根”是解答第1小題的關鍵;(2)能用“因式分解法”求得關于x的方程x2﹣6mx+9m2﹣9=1的兩個根是解答第2小題的關鍵.20、-1【解析】

直接利用二次根式的性質以及特殊角的三角函數值、絕對值的性質分別化簡得出答案.【詳解】解:原式===﹣1.【點睛】此題主要考查了實數運算以及特殊角的三角函數值,正確化簡各數是解題關鍵.21、(1)相切,理由見解析;(1)1.【解析】

(1)求出OD//AC,得到OD⊥BC,根據切線的判定得出即可;(1)根據勾股定理得出方程,求出方程的解即可.【詳解】(1)直線BC與⊙O的位置關系是相切,理由是:連接OD,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠CAB,∴∠OAD=∠CAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODB=90°,即OD⊥BC,∵OD為半徑,∴直線BC與⊙O的位置關系是相切;(1)設⊙O的半徑為R,則OD=OF=R,在Rt△BDO中,由勾股定理得:OB2=BD2+OD2,即(R+1)2=(13)2+R2,解得:R=1,即⊙O的半徑是1.【點睛】此題考查切線的判定,勾股定理,解題關鍵在于求出OD⊥BC.22、(1)2000;(2)28.8°;(3)補圖見解析;(4)36萬人.【解析】分析:(1)將A選項人數除以總人數即可得;(2)用360°乘以E選項人數所占比例可得;(3)用總人數乘以D選項人數所占百分比求得其人數,據此補全圖形即可得;(4)用總人數乘以樣本中C選項人數所占百分比可得.詳解:(1)本次接受調查的市民人數為300÷15%=2000人,(2)扇形統(tǒng)計圖中,扇形E的圓心角度數是360°×=28.8°,(3)D選項的人數為2000×25%=500,補全條形圖如下:(4)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論