內(nèi)蒙古興安市2024屆高一下數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第1頁
內(nèi)蒙古興安市2024屆高一下數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第2頁
內(nèi)蒙古興安市2024屆高一下數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第3頁
內(nèi)蒙古興安市2024屆高一下數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第4頁
內(nèi)蒙古興安市2024屆高一下數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

內(nèi)蒙古興安市2024屆高一下數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.某防疫站對學(xué)生進(jìn)行身體健康調(diào)查,與采用分層抽樣的辦法抽取樣本.某中學(xué)共有學(xué)生2000名,抽取了一個容量為200的樣本,樣本中男生103人,則該中學(xué)共有女生()A.1030人 B.97人 C.950人 D.970人2.在中,角A,B,C所對的邊分別為a,b,c,若,,則的值為()A.4 B. C. D.3.已知,且,,則()A. B. C. D.4.下列關(guān)于四棱柱的說法:①四條側(cè)棱互相平行且相等;②兩對相對的側(cè)面互相平行;③側(cè)棱必與底面垂直;④側(cè)面垂直于底面.其中正確結(jié)論的個數(shù)為()A.1 B.2 C.3 D.45.若將一個質(zhì)點隨機(jī)投入如圖所示的長方形ABCD中,其中AB=2,BC=1,則質(zhì)點落在以AB為直徑的半圓內(nèi)的概率是()A. B. C. D.6.橢圓中以點M(1,2)為中點的弦所在直線斜率為()A. B. C. D.7.已知數(shù)列的前項為和,且,則()A.5 B. C. D.98.將正整數(shù)排列如下:則圖中數(shù)2020出現(xiàn)在()A.第64行第3列 B.第64行4列 C.第65行3列 D.第65行4列9.下列說法錯誤的是()A.若樣本的平均數(shù)為5,標(biāo)準(zhǔn)差為1,則樣本的平均數(shù)為11,標(biāo)準(zhǔn)差為2B.身高和體重具有相關(guān)關(guān)系C.現(xiàn)有高一學(xué)生30名,高二學(xué)生40名,高三學(xué)生30名,若按分層抽樣從中抽取20名學(xué)生,則抽取高三學(xué)生6名D.兩個變量間的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)的值越大10.如果點位于第四象限,則角是()A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角二、填空題:本大題共6小題,每小題5分,共30分。11.我國南宋時期著名的數(shù)學(xué)家秦九韶在其著作《數(shù)書九章》中獨立提出了一種求三角形面積的方法——“三斜求積術(shù)”,即的,其中分別為內(nèi)角的對邊.若,且則的面積的最大值為____.12.已知函數(shù)f(n)=n2cos(nπ),且an=f(n)+f(n+1),則a1+a2+a3+…+a100=_______13.若,則______.14.如圖1,動點在以為圓心,半徑為1米的圓周上運(yùn)動,從最低點開始計時,用時4分鐘逆時針勻速旋轉(zhuǎn)一圈后停止.設(shè)點的縱坐標(biāo)(米)關(guān)于時間(分)的函數(shù)為,則該函數(shù)的圖像大致為________.(請注明關(guān)鍵點)15.在200m高的山頂上,測得山下一塔頂與塔底的俯角分別是30°,60°,則塔高為16.?dāng)?shù)列滿足,則數(shù)列的前6項和為_______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.在中,角的對邊分別為,已知,,.(1)求的值;(2)求和的值.18.如圖,在正三棱柱中,邊的中點為,.⑴求三棱錐的體積;⑵點在線段上,且平面,求的值.19.已知函數(shù)f(x)=.(1)若不等式k≤xf(x)+在x∈[1,3]上恒成立,求實數(shù)k的取值范圍;(2)當(dāng)x∈(m>0,n>0)時,函數(shù)g(x)=tf(x)+1(t≥0)的值域為[2-3m,2-3n],求實數(shù)t的取值范圍.20.在中,角,,的對邊分別為,,,已知向量,,且.(1)求角的值;(2)若為銳角三角形,且,求的取值范圍.21.已知且,比較與的大小.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】由分層抽樣的辦法可知在名學(xué)生中抽取的男生有,故女生人數(shù)為,應(yīng)選答案D.2、B【解析】

由正弦定理可得,,代入即可求解.【詳解】∵,,∴由正弦定理可得,,則.故選:B.【點睛】本題考查正弦定理的簡單應(yīng)用,考查函數(shù)與方程思想,考查運(yùn)算求解能力,屬于基礎(chǔ)題.3、C【解析】

根據(jù)同角三角函數(shù)的基本關(guān)系及兩角和差的正弦公式計算可得.【詳解】解:因為,.因為,所以.因為,,所以.所以.故選:【點睛】本題考查同角三角函數(shù)的基本關(guān)系,兩角和差的正弦公式,屬于中檔題.4、A【解析】

根據(jù)棱柱的概念和四棱錐的基本特征,逐項進(jìn)行判定,即可求解,得到答案.【詳解】由題意,根據(jù)棱柱的定義:有兩個面互相平行,其余各面都是四邊形,并且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體叫做棱柱,側(cè)棱垂直于底面的四棱柱叫做直四棱柱,由四棱柱的各個側(cè)面都是平行四邊形,所有的側(cè)棱都平行且相等,①正確;②兩對相對的側(cè)面互相平行,不正確,如下圖:左右側(cè)面不平行.本題題目說的是“四棱柱”不一定是“直四棱柱”,所以,③④不正確,故選A.【點睛】本題主要考查了四棱柱的概念及其應(yīng)用,其中解答中熟記棱柱的概念以及四棱錐的基本特征是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于基礎(chǔ)題.5、B【解析】試題分析:本題是幾何概型問題,矩形面積2,半圓面積,所以質(zhì)點落在以AB為直徑的半圓內(nèi)的概率是,故選B.考點:幾何概型.6、A【解析】

先設(shè)出弦的兩端點的坐標(biāo),分別代入橢圓方程,兩式相減后整理即可求得弦所在的直線的斜率.【詳解】設(shè)弦的兩端點為,,代入橢圓得,兩式相減得,即,即,即,即,∴弦所在的直線的斜率為,故選A.【點睛】本題主要考查了橢圓的性質(zhì)以及直線與橢圓的關(guān)系.在解決弦長的中點問題,涉及到“中點與斜率”時常用“點差法”設(shè)而不求,將弦所在直線的斜率、弦的中點坐標(biāo)聯(lián)系起來,相互轉(zhuǎn)化,達(dá)到解決問題的目的,屬于中檔題.7、D【解析】

先根據(jù)已知求出數(shù)列的通項,再求解.【詳解】當(dāng)時,,可得;當(dāng)且時,,得,故數(shù)列為等比數(shù)列,首項為4,公比為2.所以所以.故選D【點睛】本題主要考查項和公式求數(shù)列通項,考查等比數(shù)列的通項的求法,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.8、B【解析】

根據(jù)題意,構(gòu)造數(shù)列,利用數(shù)列求和推出的位置.【詳解】根據(jù)已知,第行有個數(shù),設(shè)數(shù)列為行數(shù)的數(shù)列,則,即第行有個數(shù),第行有個數(shù),……,第行有個數(shù),所以,第行到第行數(shù)的總個數(shù),當(dāng)時,數(shù)的總個數(shù),所以,為時的數(shù),即行的數(shù)為:,,,,……,所以,為行第列.故選:B.【點睛】本題考查數(shù)列的應(yīng)用,構(gòu)造數(shù)列,利用數(shù)列知識求解很關(guān)鍵,屬于中檔題.9、D【解析】

利用平均數(shù)和方差的定義,根據(jù)線性回歸的有關(guān)知識和分層抽樣原理,即可判斷出答案.【詳解】對于A:若樣本的平均數(shù)為5,標(biāo)準(zhǔn)差為1,則樣本的平均數(shù)2×5+1=11,標(biāo)準(zhǔn)差為2×1=2,故正確對于B:身高和體重具有相關(guān)關(guān)系,故正確對于C:高三學(xué)生占總?cè)藬?shù)的比例為:所以抽取20名學(xué)生中高三學(xué)生有名,故正確對于D:兩個變量間的線性相關(guān)性越強(qiáng),應(yīng)是相關(guān)系數(shù)的絕對值越大,故錯誤故選:D【點睛】本題考查了線性回歸的有關(guān)知識,以及平均數(shù)和方差、分層抽樣原理的應(yīng)用問題,是基礎(chǔ)題.10、C【解析】

由點位于第四象限列不等式,即可判斷的正負(fù),問題得解.【詳解】因為點位于第四象限所以,所以所以角是第三象限角故選C【點睛】本題主要考查了點的坐標(biāo)與點的位置的關(guān)系,還考查了等價轉(zhuǎn)化思想及三角函數(shù)值的正負(fù)與角的終邊的關(guān)系,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

由已知利用正弦定理可求,代入“三斜求積”公式即可求得答案.【詳解】因為,所以整理可得,由正弦定理得因為,所以所以當(dāng)時,的面積的最大值為【點睛】本題用到的知識點有同角三角函數(shù)的基本關(guān)系式,兩角和的正弦公式,正弦定理等,考查學(xué)生分析問題的能力和計算整理能力.12、-1【解析】

分n為偶數(shù)和奇數(shù)求得數(shù)列的奇數(shù)項和偶數(shù)項均為等差數(shù)列,然后利用分組求和得答案.【詳解】若n為偶數(shù),則an=f(n)+f(n+1)=n2﹣(n+1)2=﹣(2n+1),偶數(shù)項為首項為a2=﹣5,公差為﹣4的等差數(shù)列;若n為奇數(shù),則an=f(n)+f(n+1)=﹣n2+(n+1)2=2n+1,奇數(shù)項為首項為a1=3,公差為4的等差數(shù)列.∴a1+a2+a3+…+a1=(a1+a3+…+a99)+(a2+a4+…+a1)1.故答案為:1.【點睛】本題考查數(shù)列遞推式,考查了等差關(guān)系的確定,訓(xùn)練了等差數(shù)列前n項和的求法,是中檔題.13、【解析】

由誘導(dǎo)公式求解即可.【詳解】因為所以故答案為:【點睛】本題主要考查了利用誘導(dǎo)公式化簡求值,屬于基礎(chǔ)題.14、【解析】

根據(jù)題意先得出,再畫圖.【詳解】解:設(shè),,,,,則當(dāng)時,處于最低點,則,,可畫圖為:故答案為:【點睛】本題考查了三角模型的實際應(yīng)用,關(guān)鍵是根據(jù)題意建立函數(shù)模型,屬中檔題.15、【解析】

試題分析:根據(jù)題意,設(shè)塔高為x,則可知,a表示的為塔與山之間的距離,可以解得塔高為.考點:解三角形的運(yùn)用點評:主要是考查了解三角形中的余弦定理和正弦定理的運(yùn)用,屬于中檔題.16、84【解析】

根據(jù)分組求和法以及等差數(shù)列與等比數(shù)列前n項和公式求解.【詳解】因為,所以.【點睛】本題考查分組求和法以及等差數(shù)列與等比數(shù)列前n項和公式,考查基本分析求解能力,屬基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2),【解析】

(1)由,求得,由大邊對大角可知均為銳角,利用同角三角函數(shù)關(guān)系求得,利用兩角和差正弦公式求得結(jié)果;(2)根據(jù)正弦定理得到的關(guān)系,代入可求得;利用余弦定理求得.【詳解】(1)(2)由正弦定理可得:又,解得:,則由余弦定理可得:【點睛】本題考查解三角形的相關(guān)知識,涉及到同角三角函數(shù)關(guān)系、兩角和差正弦公式、大邊對大角的關(guān)系、正弦定理和余弦定理的應(yīng)用等知識,屬于??碱}型.18、(1)(2)【解析】

(1)由題可得平面,故,從而求得三棱錐的體積;(2)連接交于,連接交于,連結(jié),由平面可得,由正三棱柱的性質(zhì)可得,從而得到的值.【詳解】⑴因為為正三棱柱所以平面⑵連接交于,連接交于,連結(jié)因為//平面,平面,平面平面,所以,因為為正三棱柱,所以側(cè)面和側(cè)面為平行四邊形,從而有為的中點,于是為的中點所以,因為為邊的中點,所以也為邊中點,從而【點睛】本題考查三棱錐的體積,線面垂直的性質(zhì),正三棱柱的性質(zhì)等知識,屬于中檔題.19、(1)k≤1;(2)(0,1).【解析】試題分析:(1)把f(x)=代入,化簡得k≤x在[1,3]上恒成立,所以k≤1.(2)g(x)=tf(x)+1=-+t+1,又x∈(m>0,n>0),所以g(x)在單調(diào)遞增,所以即,即m,n是關(guān)于x的方程tx2-3x+1-t=0的兩個不等的正根.由根的分布,可得,解得0<t<1.試題解析:(1)∵xf(x)+=+=x,∴不等式k≤xf(x)+在x∈[1,3]上恒成立,即為k≤x在[1,3]上恒成立.∴k≤1.(2)∵g(x)=tf(x)+1=-+t+1,若t=0,則g(x)=1,不合題意,∴t>0.又當(dāng)t>0時,g(x)=-+t+1在上顯然是單調(diào)增函數(shù),∴即∴m,n是關(guān)于x的方程tx2-3x+1-t=0的兩個不等的正根.令h(x)=tx2-3x+1-t,則解得0<t<1.∴實數(shù)t的取值范圍是(0,1).20、(1);(2)【解析】

(1)根據(jù)和正弦定理余弦定理求得.(2)先利用正弦定理求出R=1,再把化成,再利用三角函數(shù)的圖像和性質(zhì)求解.【詳解】(1)因為,所以,由正弦定理化角為邊可得,即,由余弦定理可得,又,所以.(2)由(1)可得,設(shè)的外接圓的半徑為,因為,,所以,則,因為為銳角三角形,所以,即,所以,所以,所以,故的取值范圍為.【點睛】(1)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論