2023-2024學年陜西省四校聯(lián)考高一下數(shù)學期末學業(yè)水平測試模擬試題含解析_第1頁
2023-2024學年陜西省四校聯(lián)考高一下數(shù)學期末學業(yè)水平測試模擬試題含解析_第2頁
2023-2024學年陜西省四校聯(lián)考高一下數(shù)學期末學業(yè)水平測試模擬試題含解析_第3頁
2023-2024學年陜西省四校聯(lián)考高一下數(shù)學期末學業(yè)水平測試模擬試題含解析_第4頁
2023-2024學年陜西省四校聯(lián)考高一下數(shù)學期末學業(yè)水平測試模擬試題含解析_第5頁
已閱讀5頁,還剩7頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2023-2024學年陜西省四校聯(lián)考高一下數(shù)學期末學業(yè)水平測試模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.函數(shù)的圖象如圖所示,為了得到的圖象,可將的圖象()A.向右平移個單位 B.向右平移個單位C.向左平移個單位 D.向左平移個單位2.在中,角的對邊分別是,已知,則()A. B. C. D.或3.直線mx+4y-2=0與直線2x-5y+n=0垂直,垂足為(1,p),則n的值為()A.-12 B.-14 C.10 D.84.下面一段程序執(zhí)行后的結(jié)果是()A.6 B.4 C.8 D.105.如果3個正整數(shù)可作為一個直角三角形三條邊的邊長,則稱這3個數(shù)為一組勾股數(shù),從中任取3個不同的數(shù),則這3個數(shù)構(gòu)成一組勾股數(shù)的概率為()A. B. C. D.6.已知集合,則().A. B. C. D.7.若是異面直線,直線,則與的位置關系是()A.相交 B.異面 C.平行 D.異面或相交8.把直線繞原點逆時針轉(zhuǎn)動,使它與圓相切,則直線轉(zhuǎn)動的最小正角度().A. B. C. D.9.若cosθ>0,且sin2θ<0,則角θ的終邊在()A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限10.已知非零向量、,“函數(shù)為偶函數(shù)”是“”的()A.充分非必要條件 B.必要非充分條件C.充要條件 D.既非充分也非必要條件二、填空題:本大題共6小題,每小題5分,共30分。11.已知兩點,則線段的垂直平分線的方程為_________.12.據(jù)兩個變量、之間的觀測數(shù)據(jù)畫成散點圖如圖,這兩個變量是否具有線性相關關系_____(答是與否).13.函數(shù)的最小正周期是________14.如圖是甲、乙兩人在10天中每天加工零件個數(shù)的莖葉圖,若這10天甲加工零件個數(shù)的中位數(shù)為,乙加工零件個數(shù)的平均數(shù)為,則______.15.已知,,若與的夾角為鈍角,則實數(shù)的取值范圍為______.16.若,則=.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知關于的不等式.(1)當時,解上述不等式.(2)當時,解上述關于的不等式18.某工廠要制造A種電子裝置45臺,B種電子裝置55臺,需用薄鋼板給每臺裝置配一個外殼,已知薄鋼板的面積有兩種規(guī)格:甲種薄鋼板每張面積2m2,可做A、B的外殼分別為3個和5個,乙種薄鋼板每張面積3m2,可做A、B的外殼分別為6個和6個,求兩種薄鋼板各用多少張,才能使總的面積最小.19.已知直線l:x+3y﹣2=1.(1)求與l垂直,且過點(1,1)直線方程;(2)求圓心為(4,1),且與直線l相切的圓的方程.20.已知公差不為0的等差數(shù)列{an}滿足a3=9,a(1)求{a(2)設數(shù)列{bn}滿足bn=1n(21.如圖,已知是半徑為1,圓心角為的扇形,是扇形狐上的動點,點分別在半徑上,且是平行四邊形,記,四邊形的面積為,問當取何值時,最大?的最大值是多少?

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】

函數(shù)過代入解得,再通過平移得到的圖像.【詳解】,函數(shù)過向右平移個單位得到的圖象故答案選A【點睛】本題考查了三角函數(shù)圖形,求函數(shù)表達式,函數(shù)平移,意在考查學生對于三角函數(shù)圖形的理解.2、B【解析】

由已知知,所以B<A=,由正弦定理得,==,所以,故選B考點:正弦定理3、A【解析】

由直線mx+4y﹣2=0與直線2x﹣5y+n=0垂直,求出m=10,把(1,p)代入10x+4y﹣2=0,求出p=﹣2,把(1,﹣2)代入2x﹣5y+n=0,能求出n.【詳解】∵直線mx+4y﹣2=0與直線2x﹣5y+n=0垂直,垂足為(1,p),∴2m﹣4×5=0,解得m=10,把(1,p)代入10x+4y﹣2=0,得10+4p﹣2=0,解得p=﹣2,把(1,﹣2)代入2x﹣5y+n=0,得2+10+n=0,解得n=﹣1.故答案為:A【點睛】本題考查實數(shù)值的求法,考查直線與直線垂直的性質(zhì)等基礎知識,考查運算求解能力,考查函數(shù)與方程思想,是基礎題.4、A【解析】

根據(jù)題中的程序語句,直接按照順序結(jié)構(gòu)的功能即可求出。【詳解】由題意可得:,,,所以輸出為6,故選A.【點睛】本題主要考查順序結(jié)構(gòu)的程序框圖的理解,理解語句的含義是解題關鍵。5、C【解析】

試題分析:從中任取3個不同的數(shù)共有10種不同的取法,其中的勾股數(shù)只有3,4,5,故3個數(shù)構(gòu)成一組勾股數(shù)的取法只有1種,故所求概率為,故選C.考點:古典概型6、B【解析】

求解一元二次不等式的解集,化簡集合的表示,最后運用集合交集的定義,結(jié)合數(shù)軸求出.【詳解】因為,所以,故本題選B.【點睛】本題考查了一元二次不等式的解法,考查了集合交集的運算,正確求解一元二次不等式的解集、運用數(shù)軸是解題的關鍵.7、D【解析】

若為異面直線,且直線,則與可能相交,也可能異面,但是與不能平行,若,則,與已知矛盾,選項、、不正確故選.8、B【解析】

根據(jù)直線過原點且與圓相切,求出直線的斜率,再數(shù)形結(jié)合計算最小旋轉(zhuǎn)角?!驹斀狻拷馕觯河深}意,設切線為,∴.∴或.∴時轉(zhuǎn)動最?。嘧钚≌菫?故選B.【點睛】本題考查直線與圓的位置關系,屬于基礎題。9、D【解析】試題分析:且,,為第四象限角.故D正確.考點:象限角.10、C【解析】

根據(jù),求出向量的關系,再利用必要條件和充分條件的定義,即可判定,得到答案.【詳解】由題意,函數(shù),又為偶函數(shù),所以,則,即,可得,所以,若,則,所以,則,所以函數(shù)是偶函數(shù),所以“函數(shù)為偶函數(shù)”是“”的充要條件.故選C.【點睛】本題主要考查了向量的數(shù)量積的運算,函數(shù)奇偶性的定義及其判定,以及充分條件和必要條件的判定,著重考查了推理與運算能力,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

求出直線的斜率和線段的中點,利用兩直線垂直時斜率之積為可得出線段的垂直平分線的斜率,然后利用點斜式可寫出中垂線的方程.【詳解】線段的中點坐標為,直線的斜率為,所以,線段的垂直平分線的斜率為,其方程為,即.故答案為.【點睛】本題考查線段垂直平分線方程的求解,有如下兩種方法求解:(1)求出中垂線的斜率和線段的中點,利用點斜式得出中垂線所在直線方程;(2)設動點坐標為,利用動點到線段兩端點的距離相等列式求出動點的軌跡方程,即可作為中垂線所在直線的方程.12、否【解析】

根據(jù)散點圖的分布來判斷出兩個變量是否具有線性相關關系.【詳解】由散點圖可知,散點圖分布無任何規(guī)律,不在一條直線附近,所以,這兩個變量沒有線性相關關系,故答案為否.【點睛】本題考查利用散點圖判斷兩變量之間的線性相關關系,考查對散點圖概念的理解,屬于基礎題.13、【解析】

先利用二倍角余弦公式對函數(shù)解析式進行化簡整理,進而利用三角函數(shù)最小正周期的公式求得函數(shù)的最小正周期.【詳解】解:f(x)=1﹣2sin2x=cos2x∴函數(shù)最小正周期Tπ故答案為π.【點睛】本題主要考查了二倍角的化簡和三角函數(shù)的周期性及其求法.考查了三角函數(shù)的基礎的知識的應用.14、44.5【解析】

由莖葉圖直接可以求出甲的中位數(shù)和乙的平均數(shù),求和即可.【詳解】由莖葉圖知,甲加工零件個數(shù)的中位數(shù)為,乙加工零件個數(shù)的平均數(shù)為,則.【點睛】本題主要考查利用莖葉圖求中位數(shù)和平均數(shù).15、【解析】

由題意得出且與不共線,利用向量的坐標運算可求出實數(shù)的取值范圍.【詳解】由于與的夾角為鈍角,則且與不共線,,,,解得且,因此,實數(shù)的取值范圍是,故答案為:.【點睛】本題考查利用向量的夾角求參數(shù),解題時要找到其轉(zhuǎn)化條件,設兩個非零向量與的夾角為,為銳角,為鈍角.16、【解析】.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1).(2)當時,解集為,當時,解集為,當時,解集為或【解析】

(1)將代入,結(jié)合一元二次不等式解法即可求解.(2)根據(jù)不等式,對分類討論,即可由零點大小確定不等式的解集.【詳解】(1)當時,代入可得,解不等式可得,所以不等式的解集為.(2)關于的不等式.若,當時,代入不等式可得,解得;當時,化簡不等式可得,由解不等式可得,當時,化簡不等式可得,解不等式可得或,綜上可知,當時,不等式解集為,當時,不等式解集為,當時,不等式解集為或【點睛】本題考查了一元二次不等式的解法,含參數(shù)分類討論的應用,屬于基礎題.18、甲、乙兩種薄鋼板各5張,能保證制造A、B的兩種外殼的用量,同時又能使用料總面積最?。窘馕觥?/p>

本題可先將甲種薄鋼板設為x張,乙種薄鋼板設為y張,然后根據(jù)題意,得出兩個不等式關系,也就是3x+6y≥45、5x+6y≥55以及薄鋼板的總面積是z=2x+3y,然后通過線性規(guī)劃畫出圖像并求出總面積z=2x+3y的最小值,最后得出結(jié)果.【詳解】設甲種薄鋼板x張,乙種薄鋼板y張,則可做A種產(chǎn)品外殼3x+6y個,B種產(chǎn)品外殼5x+6y個,由題意可得3x+6y≥455x+6y≥55x≥0,y≥0,薄鋼板的總面積是可行域的陰影部分如圖所示,其中l(wèi)1:3x+6y=45、l2:因目標函數(shù)z=2x+3y在可行域上的最小值在區(qū)域邊界的A5此時z的最小值為2×5+3×5=25即甲、乙兩種薄鋼板各5張,能保證制造A、【點睛】(1)利用線性規(guī)劃求目標函數(shù)最值的步驟①作圖:畫出約束條件所確定的平面區(qū)域和目標函數(shù)所表示的平面直角坐標系中的任意一條直線l;②平移:將l平行移動,以確定最優(yōu)解所對應的點的位置.有時需要進行目標函數(shù)l和可行域邊界的斜率的大小比較;③求值:解有關方程組求出最優(yōu)解的坐標,再代入目標函數(shù),求出目標函數(shù)的最值.(2)用線性規(guī)劃解題時要注意z的幾何意義.19、(1)3x﹣y﹣2=1;(2)(x﹣4)2+(y﹣1)2.【解析】

(1)根據(jù)兩直線垂直的性質(zhì),設出所求直線的方程,將點坐標代入,由此求得所求直線方程.(2)利用圓心到直線的距離求得圓的半徑,由此求得圓的方程.【詳解】(1)根據(jù)題意,設要求直線的方程為3x﹣y﹣m=1,又由要求直線經(jīng)過點(1,1),則有3﹣1﹣m=1,解可得m=2;即要求直線的方程為3x﹣y﹣2=1;(2)根據(jù)題意,設要求圓的半徑為r,若直線l與圓相切,則有r=d,則要求圓的方程為(x﹣4)2+(y﹣1)2.【點睛】本小題主要考查兩條直線垂直的知識,考查直線和圓的位置關系,屬于基礎題.20、(1)an=4n-3【解析】

(1)根據(jù)條件列方程組,求出首項和公差即可得出通項公式;(2)利用裂項相消法求和.【詳解】(1)設等差數(shù)列an的公差為d(d≠0)a1解得d

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論