版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆福建省三明市A片區(qū)高中聯(lián)盟校數(shù)學高一下期末統(tǒng)考試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.中,下列結論:①若,則,②,③,④若是銳角三角形,則,其中正確的個數(shù)是()A.1 B.2 C.3 D.42.在中,分別為角的對邊,若,且,則邊=()A. B. C. D.3.設,若關于的不等式在區(qū)間上有解,則()A. B. C. D.4.設為等差數(shù)列的前n項和,若,則使成立的最小正整數(shù)n為()A.6 B.7 C.8 D.95.點,,直線與線段相交,則實數(shù)的取值范圍是()A. B.或C. D.或6.已知函數(shù)的圖像關于直線對稱,則可能取值是().A. B. C. D.7.等差數(shù)列中,則()A.8 B.6 C.4 D.38.已知、是球的球面上的兩點,,點為該球面上的動點,若三棱錐體積的最大值為,則球的表面積為()A. B. C. D.9.如圖,是圓的直徑,,假設你往圓內隨機撒一粒黃豆,則它落到陰影部分的概率為()A. B. C. D.10.下列命題中正確的是()A.如果兩條直線都平行于同一個平面,那么這兩條直線互相平行B.過一條直線有且只有一個平面與已知平面垂直C.如果一條直線平行于一個平面內的一條直線,那么這條直線平行于這個平面D.如果兩條直線都垂直于同一平面,那么這兩條直線共面二、填空題:本大題共6小題,每小題5分,共30分。11.如圖,在正方體中,點P是上底面(含邊界)內一動點,則三棱錐的主視圖與俯視圖的面積之比的最小值為______.12.在空間直角坐標系中,點關于原點的對稱點的坐標為______.13.已知圓錐的高為,體積為,用平行于圓錐底面的平面截圓錐,得到的圓臺體積是,則該圓臺的高為_______.14.在ΔABC中,角A,B,C所對的對邊分別為a,b,c,若A=30°,a=7,b=215.化簡:______.(要求將結果寫成最簡形式)16.數(shù)列中,,則____________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.在中,成等差數(shù)列,分別為的對邊,并且,,求.18.(1)已知圓經過和兩點,若圓心在直線上,求圓的方程;(2)求過點、和的圓的方程.19.已知圓,直線(1)求證:直線過定點;(2)求直線被圓所截得的弦長最短時的值;(3)已知點,在直線MC上(C為圓心),存在定點N(異于點M),滿足:對于圓C上任一點P,都有為一常數(shù),試求所有滿足條件的點N的坐標及該常數(shù).20.如圖,四面體中,分別是的中點,,.(1)求證:平面;(2)求三棱錐的體積.21.如圖,三棱錐中,,、、、分別是、、、的中點.(1)證明:平面;(2)證明:四邊形是菱形
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
根據正弦定理與誘導公式,以及正弦函數(shù)的性質,逐項判斷,即可得出結果.【詳解】①在中,因為,所以,所以,故①正確;②,故②正確;③,故③錯誤;④若是銳角三角形,則,均為銳角,因為正弦函數(shù)在上單調遞增,所以,故④正確;故選C【點睛】本題主要考查命題真假的判定,熟記正弦定理,誘導公式等即可,屬于??碱}型.2、B【解析】
由利用正弦定理化簡,再利用余弦定理表示出cosA,整理化簡得a2b2+c2,與,聯(lián)立即可求出b的值.【詳解】由sinB=8cosAsinC,利用正弦定理化簡得:b=8c?cosA,將cosA代入得:b=8c?,整理得:a2b2+c2,即a2﹣c2b2,∵a2﹣c2=3b,∴b2=3b,解得:b=1或b=0(舍去),則b=1.故選B【點睛】此題考查了正弦、余弦定理,熟練掌握定理,準確計算是解本題的關鍵,是中檔題3、D【解析】
根據題意得不等式對應的二次函數(shù)開口向上,分別討論三種情況即可.【詳解】由題意得:當當當綜上所述:,選D.【點睛】本題主要考查了含參一元二次不等式中參數(shù)的取值范圍.解這類題通常分三種情況:.有時還需要結合韋達定理進行解決.4、C【解析】
利用等差數(shù)列下標和的性質可確定,,,由此可確定最小正整數(shù).【詳解】且,使得成立的最小正整數(shù)故選:【點睛】本題考查等差數(shù)列性質的應用問題,關鍵是能夠熟練應用等差數(shù)列下標和性質化簡前項和公式.5、B【解析】
根據,在直線異側或其中一點在直線上列不等式求解即可.【詳解】因為直線與線段相交,所以,,在直線異側或其中一點在直線上,所以,解得或,故選B.【點睛】本題主要考查點與直線的位置關系,考查了一元二次不等式的解法,屬于基礎題.6、D【解析】
根據正弦型函數(shù)的對稱性,可以得到一個等式,結合四個選項選出正確答案.【詳解】因為函數(shù)的圖像關于直線對稱,所以有,當時,,故本題選D.【點睛】本題考查了正弦型函數(shù)的對稱性,考查了數(shù)學運算能力.7、D【解析】
設等差數(shù)列的公差為,根據題意,求解,進而可求得,即可得到答案.【詳解】由題意,設等差數(shù)列的公差為,則,即,又由,故選D.【點睛】本題主要考查了等差數(shù)列的通項公式的應用,其中解答中設等差數(shù)列的公差為,利用等差數(shù)列的通項公式化簡求解是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.8、A【解析】
當點位于垂直于面的直徑端點時,三棱錐的體積最大,利用三棱錐體積的最大值為,求出半徑,即可求出球的表面積.【詳解】如圖所示,當點位于垂直于面的直徑端點時,三棱錐的體積最大,設球的半徑為,此時,.因此,球的表面積為.故選:A.【點睛】本題考查球的半徑與表面積的計算,確定點的位置是關鍵,考查分析問題和解決問題的能力,屬于中等題.9、B【解析】
先根據條件計算出陰影部分的面積,然后計算出整個圓的面積,利用幾何概型中的面積模型即可計算出對應的概率.【詳解】設圓的半徑為,因為,所以,又因為,所以落到陰影部分的概率為.故選:B.【點睛】本題考查幾何概型中的面積模型的簡單應用,難度較易.注意幾何概型的常見概率公式:.10、D【解析】
利用定理及特例法逐一判斷即可?!驹斀狻拷猓喝绻麅蓷l直線都平行于同一個平面,那么這兩條直線相交、平行或異面,故A不正確;過一條直線有且只有一個平面與已知平面垂直,不正確.反例:如果該直線本身就垂直于已知平面的話,那么可以找到無數(shù)個平面與已知平面垂直,故B不正確;如果這兩條直線都在平面內且平行,那么這直線不平行于這個平面,故C不正確;如果兩條直線都垂直于同一平面,則這兩條直線平行,所以這兩條直線共面,故D正確.故選:D.【點睛】本題主要考查了線線平行的判定,面面垂直的判定,線面平行的判定,線面垂直的性質,考查空間思維能力,屬于中檔題。二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
設正方體的棱長為,求出三棱錐的主視圖面積為定值,當與重合時,三棱錐的俯視圖面積最大,此時主視圖與俯視圖面積比值最小.【詳解】設正方體的棱長為,則三棱錐的主視圖是底面邊為,高為的三角形,其面積為,當與重合時,三棱錐的俯視圖為正方形,其面積最大,最大值為,所以,三棱錐的主視圖與俯視圖面積比的最小值為.故答案為:.【點睛】本題考查了空間幾何體的三視圖面積計算應用問題,屬于基礎題.12、【解析】
利用空間直角坐標系中,關于原點對稱的點的坐標特征解答即可.【詳解】在空間直角坐標系中,關于原點對稱的點的坐標對應互為相反數(shù),所以點關于原點的對稱點的坐標為.故答案為:【點睛】本題主要考查空間直角坐標系中對稱點的特點,意在考查學生對該知識的理解掌握水平,屬于基礎題.13、【解析】設該圓臺的高為,由題意,得用平行于圓錐底面的平面截圓錐,得到的小圓錐體積是,則,解得,即該圓臺的高為3.點睛:本題考查圓錐的結構特征;在處理圓錐的結構特征時可記住常見結論,如本題中用平行于圓錐底面的平面截圓錐,截面與底面的面積之比是兩個圓錐高的比值的平方,所得兩個圓錐的體積之比是兩個圓錐高的比值的立方.14、32或【解析】
由余弦定理求出c,再利用面積公式即可得到答案?!驹斀狻坑捎谠讦BC中,A=30°,a=7,b=23,根據余弦定理可得:a2=b所以當c=1時,ΔABC的面積S=12bcsinA=32故ΔABC的面積等于32或【點睛】本題考查余弦定理與面積公式在三角形中的應用,屬于中檔題。15、【解析】
結合誘導公式化簡,再結合兩角差正弦公式分析即可【詳解】故答案為:【點睛】本題考查三角函數(shù)的化簡,誘導公式的使用,屬于基礎題16、1【解析】
利用極限運算法則求解即可【詳解】故答案為:1【點睛】本題考查數(shù)列的極限,是基礎題三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、或.【解析】
先算出,從而得到,也就是,結合面積得到,再根據余弦定理可得,故可解得的大小.【詳解】∵成等差數(shù)列,∴,又,∴,∴.所以,所以,①又,∴.②由①②,得,,而由余弦定理可知∴即.③聯(lián)立③與②解得或,綜上,或.【點睛】三角形中共有七個幾何量(三邊三角以及外接圓的半徑),一般地,知道其中的三個量(除三個角外),可以求得其余的四個量.(1)如果知道三邊或兩邊及其夾角,用余弦定理;(2)如果知道兩邊即一邊所對的角,用正弦定理(也可以用余弦定理求第三條邊);(3)如果知道兩角及一邊,用正弦定理.18、(1);(2)【解析】
(1)由直線AB的斜率,中點坐標,寫出線段AB中垂線的直線方程,與直線x-2y-3=0聯(lián)立即可求出交點的坐標即為圓心的坐標,再根據兩點間的距離公式求出圓心到點A的距離即為圓的半徑,根據圓心坐標與半徑寫出圓的標準方程即可;(2)設圓的方程為,代入題中三點坐標,列方程組求解即可【詳解】(1)由點和點可得,線段的中垂線方程為.∵圓經過和兩點,圓心在直線上,∴,解得,即所求圓的圓心,∴半徑,所求圓的方程為;(2)設圓的方程為,∵圓過點、和,∴列方程組得解得,∴圓的方程為.【點睛】本題考查了圓的方程求解,考查了待定系數(shù)法及運算能力,屬于中檔題.19、(1)直線過定點(2).(3)在直線上存在定點,使得為常數(shù).【解析】分析:(Ⅰ)利用直線系方程的特征,直接求解直線l過定點A的坐標.(Ⅱ)當AC⊥l時,所截得弦長最短,由題知,r=2,求出AC的斜率,利用點到直線的距離,轉化求解即可.(Ⅲ)由題知,直線MC的方程為,假設存在定點N滿足題意,則設P(x,y),,得,且,求出λ,然后求解比值.詳解:(Ⅰ)依題意得,令且,得直線過定點(Ⅱ)當時,所截得弦長最短,由題知,,得,由得(Ⅲ)法一:由題知,直線的方程為,假設存在定點滿足題意,則設,,得,且整理得,上式對任意恒成立,且解得,說以(舍去,與重合),綜上可知,在直線上存在定點,使得為常數(shù)點睛:過定點的直線系A1x+B1y+C1+λ(A2x+B2y+C2)=0表示通過兩直線l1∶A1x+B1y+C1=0與l2∶A2x+B2y+C2=0交點的直線系,而這交點即為直線系所通過的定點.20、(1)見解析;(2)【解析】
(1)連接,由等腰三角形三線合一,可得,,再勾股定理可得,進而根據線面垂直的判定定理得到平面;(2)根據等積法可得,結合(1)中結論,可得即為棱錐的高,代入棱錐的體積公式,可得答案.【詳解】證明:(1)連接.,,.,為中點,,,為中點,,,在中,,,,,,即.又,,平面平面.(2)等邊的面積為,為中點而,.【點睛】本題考查的知識點是直線與平面垂直的判定,棱錐的體積公式,熟練掌握空間直線與直線垂直、直線與平面垂直之間的轉化關系是解答的關鍵,屬于中檔題.2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度出租車企業(yè)車輛事故責任認定合同3篇
- 2025年廣東省廣州市凈水有限公司招聘筆試參考題庫含答案解析
- 2025年度個人住宅裝修設計合同范本3篇
- 2025年粵人版八年級歷史下冊月考試卷含答案
- 2025年湖北長荊投資開發(fā)有限公司招聘筆試參考題庫含答案解析
- 2025年華天實業(yè)控股集團有限公司招聘筆試參考題庫含答案解析
- 2025年重慶市益源捷科技有限公司招聘筆試參考題庫含答案解析
- 2025年新型節(jié)能門窗安裝與銷售合同3篇
- 2025年云南保山施甸縣乾元水利投資有限責任公司招聘筆試參考題庫附帶答案詳解
- 2025年度綠色生態(tài)牛羊養(yǎng)殖基地草料大宗購銷合作合同范本4篇
- 危險品倉儲危險廢物處置與管理考核試卷
- 2024版汽車融資擔保合同范本版B版
- 浙江寧波鎮(zhèn)海區(qū)2025屆中考生物對點突破模擬試卷含解析
- 工業(yè)自動化設備維護保養(yǎng)方案
- 《中醫(yī)心理學》課件
- 心肌梗死病人護理課件
- 宮頸癌中醫(yī)護理查房
- 2023年安徽省公務員錄用考試《行測》真題及答案解析
- 《阻燃材料與技術》課件 顏龍 第3、4講 阻燃基本理論、阻燃劑性能與應用
- 輪狀病毒護理課件
- 地測防治水技能競賽理論考試題庫(含答案)
評論
0/150
提交評論