四川省什邡市城南校中考猜題數(shù)學(xué)試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖是一個由4個相同的正方體組成的立體圖形,它的主視圖是()A. B. C. D.2.據(jù)《關(guān)于“十三五”期間全面深入推進教育信息化工作的指導(dǎo)意見》顯示,全國6000萬名師生已通過“網(wǎng)絡(luò)學(xué)習(xí)空間”探索網(wǎng)絡(luò)條件下的新型教學(xué)、學(xué)習(xí)與教研模式,教育公共服務(wù)平臺基本覆蓋全國學(xué)生、教職工等信息基礎(chǔ)數(shù)據(jù)庫,實施全國中小學(xué)教師信息技術(shù)應(yīng)用能力提升工程.則數(shù)字6000萬用科學(xué)記數(shù)法表示為()A.6×105 B.6×106 C.6×107 D.6×1083.如圖,△ABC是⊙O的內(nèi)接三角形,AB=AC,∠BCA=65°,作CD∥AB,并與○O相交于點D,連接BD,則∠DBC的大小為()A.15° B.35° C.25° D.45°4.若點P(﹣3,y1)和點Q(﹣1,y2)在正比例函數(shù)y=﹣k2x(k≠0)圖象上,則y1與y2的大小關(guān)系為()A.y1>y2B.y1≥y2C.y1<y2D.y1≤y25.不等式2x﹣1<1的解集在數(shù)軸上表示正確的是()A. B.C. D.6.如圖,已知線段AB,分別以A,B為圓心,大于AB為半徑作弧,連接弧的交點得到直線l,在直線l上取一點C,使得∠CAB=25°,延長AC至點M,則∠BCM的度數(shù)為()A.40° B.50° C.60° D.70°7.為了節(jié)約水資源,某市準(zhǔn)備按照居民家庭年用水量實行階梯水價,水價分檔遞增,計劃使第一檔、第二檔和第三檔的水價分別覆蓋全市居民家庭的80%,15%和5%.為合理確定各檔之間的界限,隨機抽查了該市5萬戶居民家庭上一年的年用水量(單位:m1),繪制了統(tǒng)計圖,如圖所示.下面有四個推斷:①年用水量不超過180m1的該市居民家庭按第一檔水價交費;②年用水量不超過240m1的該市居民家庭按第三檔水價交費;③該市居民家庭年用水量的中位數(shù)在150~180m1之間;④該市居民家庭年用水量的眾數(shù)約為110m1.其中合理的是()A.①③ B.①④ C.②③ D.②④8.如圖,半徑為1的圓O1與半徑為3的圓O2相內(nèi)切,如果半徑為2的圓與圓O1和圓O2都相切,那么這樣的圓的個數(shù)是()A.1 B.2 C.3 D.49.對于二次函數(shù),下列說法正確的是()A.當(dāng)x>0,y隨x的增大而增大B.當(dāng)x=2時,y有最大值-3C.圖像的頂點坐標(biāo)為(-2,-7)D.圖像與x軸有兩個交點10.如圖,△ABC中,AB=AC=15,AD平分∠BAC,點E為AC的中點,連接DE,若△CDE的周長為21,則BC的長為()A.16 B.14 C.12 D.6二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,AE是正八邊形ABCDEFGH的一條對角線,則∠BAE=°.12.分解因式:=.13.化簡:a+1+a(a+1)+a(a+1)2+…+a(a+1)99=________.14.已知拋物線開口向上且經(jīng)過點,雙曲線經(jīng)過點,給出下列結(jié)論:;;,c是關(guān)于x的一元二次方程的兩個實數(shù)根;其中正確結(jié)論是______填寫序號15.已知反比例函數(shù)的圖像經(jīng)過點,那么的值是__.16.已知⊙O1、⊙O2的半徑分別為2和5,圓心距為d,若⊙O1與⊙O2相交,那么d的取值范圍是_________.三、解答題(共8題,共72分)17.(8分)解不等式:3x﹣1>2(x﹣1),并把它的解集在數(shù)軸上表示出來.18.(8分)如圖①,有兩個形狀完全相同的直角三角形ABC和EFG疊放在一起(點A與點E重合),已知AC=8cm,BC=6cm,∠C=90°,EG=4cm,∠EGF=90°,O是△EFG斜邊上的中點.
如圖②,若整個△EFG從圖①的位置出發(fā),以1cm/s的速度沿射線AB方向平移,在△EFG平移的同時,點P從△EFG的頂點G出發(fā),以1cm/s的速度在直角邊GF上向點F運動,當(dāng)點P到達點F時,點P停止運動,△EFG也隨之停止平移.設(shè)運動時間為x(s),F(xiàn)G的延長線交AC于H,四邊形OAHP的面積為y(cm2)(不考慮點P與G、F重合的情況).
(1)當(dāng)x為何值時,OP∥AC;
(2)求y與x之間的函數(shù)關(guān)系式,并確定自變量x的取值范圍;
(3)是否存在某一時刻,使四邊形OAHP面積與△ABC面積的比為13:24?若存在,求出x的值;若不存在,說明理由.(參考數(shù)據(jù):1142=12996,1152=13225,1162=13456或4.42=19.36,4.52=20.25,4.62=21.16)19.(8分)﹣(﹣1)2018+﹣()﹣120.(8分)隨著信息技術(shù)的快速發(fā)展,“互聯(lián)網(wǎng)+”滲透到我們?nèi)粘I畹母鱾€領(lǐng)域,網(wǎng)上在線學(xué)習(xí)交流已不再是夢,現(xiàn)有某教學(xué)網(wǎng)站策劃了A,B兩種上網(wǎng)學(xué)習(xí)的月收費方式:收費方式月使用費/元包時上網(wǎng)時間/h超時費/(元/min)A7250.01Bmn0.01設(shè)每月上網(wǎng)學(xué)習(xí)時間為x小時,方案A,B的收費金額分別為yA,yB.(1)如圖是yB與x之間函數(shù)關(guān)系的圖象,請根據(jù)圖象填空:m=;n=;(2)寫出yA與x之間的函數(shù)關(guān)系式;(3)選擇哪種方式上網(wǎng)學(xué)習(xí)合算,為什么.21.(8分)全面兩孩政策實施后,甲,乙兩個家庭有了各自的規(guī)劃.假定生男生女的概率相同,回答下列問題:甲家庭已有一個男孩,準(zhǔn)備再生一個孩子,則第二個孩子是女孩的概率是;乙家庭沒有孩子,準(zhǔn)備生兩個孩子,求至少有一個孩子是女孩的概率.22.(10分)某高科技產(chǎn)品開發(fā)公司現(xiàn)有員工50名,所有員工的月工資情況如下表:員工管理人員普通工作人員人員結(jié)構(gòu)總經(jīng)理部門經(jīng)理科研人員銷售人員高級技工中級技工勤雜工員工數(shù)(名)1323241每人月工資(元)2100084002025220018001600950請你根據(jù)上述內(nèi)容,解答下列問題:(1)該公司“高級技工”有名;(2)所有員工月工資的平均數(shù)x為2500元,中位數(shù)為元,眾數(shù)為元;(3)小張到這家公司應(yīng)聘普通工作人員.請你回答右圖中小張的問題,并指出用(2)中的哪個數(shù)據(jù)向小張介紹員工的月工資實際水平更合理些;(4)去掉四個管理人員的工資后,請你計算出其他員工的月平均工資(結(jié)果保留整數(shù)),并判斷能否反映該公司員工的月工資實際水平.23.(12分)如圖,正方形ABCD的邊長為4,點E,F(xiàn)分別在邊AB,AD上,且∠ECF=45°,CF的延長線交BA的延長線于點G,CE的延長線交DA的延長線于點H,連接AC,EF.,GH.(1)填空:∠AHC∠ACG;(填“>”或“<”或“=”)(2)線段AC,AG,AH什么關(guān)系?請說明理由;(3)設(shè)AE=m,①△AGH的面積S有變化嗎?如果變化.請求出S與m的函數(shù)關(guān)系式;如果不變化,請求出定值.②請直接寫出使△CGH是等腰三角形的m值.24.閱讀下列材料:題目:如圖,在△ABC中,已知∠A(∠A<45°),∠C=90°,AB=1,請用sinA、cosA表示sin2A.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】
從正面看,有2層,3列,左側(cè)一列有1層,中間一列有2層,右側(cè)一列有一層,據(jù)此解答即可.【詳解】∵從正面看,有2層,3列,左側(cè)一列有1層,中間一列有2層,右側(cè)一列有一層,∴D是該幾何體的主視圖.故選D.【點睛】本題考查三視圖的知識,從正面看到的圖是正視圖,從上面看到的圖形是俯視圖,從左面看到的圖形是左視圖,能看到的線畫實線,被遮擋的線畫虛線.2、C【解析】
將一個數(shù)寫成的形式,其中,n是正數(shù),這種記數(shù)的方法叫做科學(xué)記數(shù)法,根據(jù)定義解答即可.【詳解】解:6000萬=6×1.故選:C.【點睛】此題考查科學(xué)記數(shù)法,當(dāng)所表示的數(shù)的絕對值大于1時,n為正整數(shù),其值等于原數(shù)中整數(shù)部分的數(shù)位減去1,當(dāng)要表示的數(shù)的絕對值小于1時,n為負整數(shù),其值等于原數(shù)中第一個非零數(shù)字前面所有零的個數(shù)的相反數(shù),正確掌握科學(xué)記數(shù)法中n的值的確定是解題的關(guān)鍵.3、A【解析】
根據(jù)等腰三角形的性質(zhì)以及三角形內(nèi)角和定理可得∠A=50°,再根據(jù)平行線的性質(zhì)可得∠ACD=∠A=50°,由圓周角定理可行∠D=∠A=50°,再根據(jù)三角形內(nèi)角和定理即可求得∠DBC的度數(shù).【詳解】∵AB=AC,∴∠ABC=∠ACB=65°,∴∠A=180°-∠ABC-∠ACB=50°,∵DC//AB,∴∠ACD=∠A=50°,又∵∠D=∠A=50°,∴∠DBC=180°-∠D-∠BCD=180°-50°-(65°+50°)=15°,故選A.【點睛】本題考查了等腰三角形的性質(zhì),圓周角定理,三角形內(nèi)角和定理等,熟練掌握相關(guān)內(nèi)容是解題的關(guān)鍵.4、A【解析】
分別將點P(﹣3,y1)和點Q(﹣1,y2)代入正比例函數(shù)y=﹣k2x,求出y1與y2的值比較大小即可.【詳解】∵點P(﹣3,y1)和點Q(﹣1,y2)在正比例函數(shù)y=﹣k2x(k≠0)圖象上,∴y1=﹣k2×(-3)=3k2,y2=﹣k2×(-1)=k2,∵k≠0,∴y1>y2.故答案選A.【點睛】本題考查了正比例函數(shù),解題的關(guān)鍵是熟練的掌握正比例函數(shù)的知識點.5、D【解析】
先求出不等式的解集,再在數(shù)軸上表示出來即可.【詳解】移項得,2x<1+1,合并同類項得,2x<2,x的系數(shù)化為1得,x<1.在數(shù)軸上表示為:.故選D.【點睛】本題考查了解一元一次不等式,熟練掌握運算法則是解題的關(guān)鍵.6、B【解析】
解:∵由作法可知直線l是線段AB的垂直平分線,∴AC=BC,∴∠CAB=∠CBA=25°,∴∠BCM=∠CAB+∠CBA=25°+25°=50°.故選B.7、B【解析】
利用條形統(tǒng)計圖結(jié)合中位數(shù)和中位數(shù)的定義分別分析得出答案.【詳解】①由條形統(tǒng)計圖可得:年用水量不超過180m1的該市居民家庭一共有(0.25+0.75+1.5+1.0+0.5)=4(萬),
×100%=80%,故年用水量不超過180m1的該市居民家庭按第一檔水價交費,正確;
②∵年用水量超過240m1的該市居民家庭有(0.15+0.15+0.05)=0.15(萬),
∴×100%=7%≠5%,故年用水量超過240m1的該市居民家庭按第三檔水價交費,故此選項錯誤;
③∵5萬個數(shù)據(jù)的中間是第25000和25001的平均數(shù),
∴該市居民家庭年用水量的中位數(shù)在120-150之間,故此選項錯誤;
④該市居民家庭年用水量為110m1有1.5萬戶,戶數(shù)最多,該市居民家庭年用水量的眾數(shù)約為110m1,因此正確,
故選B.【點睛】此題主要考查了頻數(shù)分布直方圖以及中位數(shù)和眾數(shù)的定義,正確利用條形統(tǒng)計圖獲取正確信息是解題關(guān)鍵.8、C【解析】分析:過O1、O2作直線,以O(shè)1O2上一點為圓心作一半徑為2的圓,將這個圓從左側(cè)與圓O1、圓O2同時外切的位置(即圓O3)開始向右平移,觀察圖形,并結(jié)合三個圓的半徑進行分析即可得到符合要求的圓的個數(shù).詳解:如下圖,(1)當(dāng)半徑為2的圓同時和圓O1、圓O2外切時,該圓在圓O3的位置;(2)當(dāng)半徑為2的圓和圓O1、圓O2都內(nèi)切時,該圓在圓O4的位置;(3)當(dāng)半徑為2的圓和圓O1外切,而和圓O2內(nèi)切時,該圓在圓O5的位置;綜上所述,符合要求的半徑為2的圓共有3個.故選C.點睛:保持圓O1、圓O2的位置不動,以直線O1O2上一個點為圓心作一個半徑為2的圓,觀察其從左至右平移過程中與圓O1、圓O2的位置關(guān)系,結(jié)合三個圓的半徑大小即可得到本題所求答案.9、B【解析】
二次函數(shù),所以二次函數(shù)的開口向下,當(dāng)x<2,y隨x的增大而增大,選項A錯誤;當(dāng)x=2時,取得最大值,最大值為-3,選項B正確;頂點坐標(biāo)為(2,-3),選項C錯誤;頂點坐標(biāo)為(2,-3),拋物線開口向下可得拋物線與x軸沒有交點,選項D錯誤,故答案選B.考點:二次函數(shù)的性質(zhì).10、C【解析】
先根據(jù)等腰三角形三線合一知D為BC中點,由點E為AC的中點知DE為△ABC中位線,故△ABC的周長是△CDE的周長的兩倍,由此可求出BC的值.【詳解】∵AB=AC=15,AD平分∠BAC,∴D為BC中點,∵點E為AC的中點,∴DE為△ABC中位線,∴DE=AB,∴△ABC的周長是△CDE的周長的兩倍,由此可求出BC的值.∴AB+AC+BC=42,∴BC=42-15-15=12,故選C.【點睛】此題主要考查三角形的中位線定理,解題的關(guān)鍵是熟知等腰三角形的三線合一定理.二、填空題(本大題共6個小題,每小題3分,共18分)11、67.1【解析】試題分析:∵圖中是正八邊形,∴各內(nèi)角度數(shù)和=(8﹣2)×180°=1080°,∴∠HAB=1080°÷8=131°,∴∠BAE=131°÷2=67.1°.故答案為67.1.考點:多邊形的內(nèi)角12、a(a+2)(a-2)【解析】
13、(a+1)1.【解析】
原式提取公因式,計算即可得到結(jié)果.【詳解】原式=(a+1)[1+a+a(a+1)+a(a+1)2+…+a(a+1)98],
=(a+1)2[1+a+a(a+1)+a(a+1)2+…+a(a+1)97],
=(a+1)3[1+a+a(a+1)+a(a+1)2+…+a(a+1)96],
=…,
=(a+1)1.
故答案是:(a+1)1.【點睛】考查了因式分解-提公因式法,熟練掌握提取公因式的方法是解本題的關(guān)鍵.14、①③【解析】試題解析:∵拋物線開口向上且經(jīng)過點(1,1),雙曲線經(jīng)過點(a,bc),∴,∴bc>0,故①正確;∴a>1時,則b、c均小于0,此時b+c<0,當(dāng)a=1時,b+c=0,則與題意矛盾,當(dāng)0<a<1時,則b、c均大于0,此時b+c>0,故②錯誤;∴可以轉(zhuǎn)化為:,得x=b或x=c,故③正確;∵b,c是關(guān)于x的一元二次方程的兩個實數(shù)根,∴a﹣b﹣c=a﹣(b+c)=a+(a﹣1)=2a﹣1,當(dāng)a>1時,2a﹣1>3,當(dāng)0<a<1時,﹣1<2a﹣1<3,故④錯誤;故答案為①③.15、【解析】
將點的坐標(biāo)代入,可以得到-1=,然后解方程,便可以得到k的值.【詳解】∵反比例函數(shù)y=的圖象經(jīng)過點(2,-1),
∴-1=
∴k=?;
故答案為k=?.【點睛】本題主要考查函數(shù)圖像上的點滿足其解析式,可以結(jié)合代入法進行解答16、3<d<7【解析】
若兩圓的半徑分別為R和r,且R≥r,圓心距為d:相交,則R-r<d<R+r,從而得到圓心距O1O2的取值范圍.【詳解】∵⊙O1和⊙O2的半徑分別為2和5,且兩圓的位置關(guān)系為相交,∴圓心距O1O2的取值范圍為5-2<d<2+5,即3<d<7.故答案為:3<d<7.【點睛】本題考查的知識點是圓與圓的位置關(guān)系,解題的關(guān)鍵是熟練的掌握圓與圓的位置關(guān)系.三、解答題(共8題,共72分)17、【解析】試題分析:按照解一元一次不等式的步驟解不等式即可.試題解析:,,.解集在數(shù)軸上表示如下點睛:解一元一次不等式一般步驟:去分母,去括號,移項,合并同類項,把系數(shù)化為1.18、(1)1.5s;(2)S=x2+x+3(0<x<3);(3)當(dāng)x=(s)時,四邊形OAHP面積與△ABC面積的比為13:1.【解析】
(1)由于O是EF中點,因此當(dāng)P為FG中點時,OP∥EG∥AC,據(jù)此可求出x的值.(2)由于四邊形AHPO形狀不規(guī)則,可根據(jù)三角形AFH和三角形OPF的面積差來得出四邊形AHPO的面積.三角形AHF中,AH的長可用AF的長和∠FAH的余弦值求出,同理可求出FH的表達式(也可用相似三角形來得出AH、FH的長).三角形OFP中,可過O作OD⊥FP于D,PF的長易知,而OD的長,可根據(jù)OF的長和∠FOD的余弦值得出.由此可求得y、x的函數(shù)關(guān)系式.(3)先求出三角形ABC和四邊形OAHP的面積,然后將其代入(2)的函數(shù)式中即可得出x的值.【詳解】解:(1)∵Rt△EFG∽Rt△ABC∴,即,∴FG==3cm∵當(dāng)P為FG的中點時,OP∥EG,EG∥AC∴OP∥AC∴x==×3=1.5(s)∴當(dāng)x為1.5s時,OP∥AC.(2)在Rt△EFG中,由勾股定理得EF=5cm∵EG∥AH∴△EFG∽△AFH∴,∴AH=(x+5),F(xiàn)H=(x+5)過點O作OD⊥FP,垂足為D∵點O為EF中點∴OD=EG=2cm∵FP=3﹣x∴S四邊形OAHP=S△AFH﹣S△OFP=?AH?FH﹣?OD?FP=?(x+5)?(x+5)﹣×2×(3﹣x)=x2+x+3(0<x<3).(3)假設(shè)存在某一時刻x,使得四邊形OAHP面積與△ABC面積的比為13:1則S四邊形OAHP=×S△ABC∴x2+x+3=××6×8∴6x2+85x﹣250=0解得x1=,x2=﹣(舍去)∵0<x<3∴當(dāng)x=(s)時,四邊形OAHP面積與△ABC面積的比為13:1.【點睛】本題是比較常規(guī)的動態(tài)幾何壓軸題,第1小題運用相似形的知識容易解決,第2小題同樣是用相似三角形建立起函數(shù)解析式,要說的是本題中說明了要寫出自變量x的取值范圍,而很多試題往往不寫,要記住自變量x的取值范圍是函數(shù)解析式不可分離的一部分,無論命題者是否交待了都必須寫,第3小題只要根據(jù)函數(shù)解析式列個方程就能解決.19、-1.【解析】
直接利用負指數(shù)冪的性質(zhì)以及算術(shù)平方根的性質(zhì)分別化簡得出答案.【詳解】原式=﹣1+1﹣3=﹣1.【點睛】本題主要考查了實數(shù)運算,正確化簡各數(shù)是解題的關(guān)鍵.20、(1)10,50;(2)見解析;(3)當(dāng)0<x<30時,選擇A方式上網(wǎng)學(xué)習(xí)合算,當(dāng)x=30時,選擇哪種方式上網(wǎng)學(xué)習(xí)都行,當(dāng)x>30時,選擇B方式上網(wǎng)學(xué)習(xí)合算.【解析】
(1)由圖象知:m=10,n=50;(2)根據(jù)已知條件即可求得yA與x之間的函數(shù)關(guān)系式為:當(dāng)x≤25時,yA=7;當(dāng)x>25時,yA=7+(x﹣25)×0.01;(3)先求出yB與x之間函數(shù)關(guān)系為:當(dāng)x≤50時,yB=10;當(dāng)x>50時,yB=10+(x﹣50)×60×0.01=0.6x﹣20;然后分段求出哪種方式上網(wǎng)學(xué)習(xí)合算即可.【詳解】解:(1)由圖象知:m=10,n=50;故答案為:10;50;(2)yA與x之間的函數(shù)關(guān)系式為:當(dāng)x≤25時,yA=7,當(dāng)x>25時,yA=7+(x﹣25)×60×0.01,∴yA=0.6x﹣8,∴yA=;(3)∵yB與x之間函數(shù)關(guān)系為:當(dāng)x≤50時,yB=10,當(dāng)x>50時,yB=10+(x﹣50)×60×0.01=0.6x﹣20,當(dāng)0<x≤25時,yA=7,yB=50,∴yA<yB,∴選擇A方式上網(wǎng)學(xué)習(xí)合算,當(dāng)25<x≤50時.yA=yB,即0.6x﹣8=10,解得;x=30,∴當(dāng)25<x<30時,yA<yB,選擇A方式上網(wǎng)學(xué)習(xí)合算,當(dāng)x=30時,yA=yB,選擇哪種方式上網(wǎng)學(xué)習(xí)都行,當(dāng)30<x≤50,yA>yB,選擇B方式上網(wǎng)學(xué)習(xí)合算,當(dāng)x>50時,∵yA=0.6x﹣8,yB=0.6x﹣20,yA>yB,∴選擇B方式上網(wǎng)學(xué)習(xí)合算,綜上所述:當(dāng)0<x<30時,yA<yB,選擇A方式上網(wǎng)學(xué)習(xí)合算,當(dāng)x=30時,yA=yB,選擇哪種方式上網(wǎng)學(xué)習(xí)都行,當(dāng)x>30時,yA>yB,選擇B方式上網(wǎng)學(xué)習(xí)合算.【點睛】本題考查一次函數(shù)的應(yīng)用.21、(1);(2)【解析】
(1)根據(jù)可能性只有男孩或女孩,直接得到其概率;(2)列出所有的可能性,然后確定至少有一個女孩的可能性,然后可求概率.【詳解】解:(1)(1)第二個孩子是女孩的概率=;故答案為;(2)畫樹狀圖為:
共有4種等可能的結(jié)果數(shù),其中至少有一個孩子是女孩的結(jié)果數(shù)為3,
所以至少有一個孩子是女孩的概率=.【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式計算事件A或事件B的概率.22、(1)16人;(2)工中位數(shù)是1700元;眾數(shù)是1600元;(3)用1700元或1600元來介紹更合理些.(4)能反映該公司員工的月工資實際水平.【解析】
(1)用總?cè)藬?shù)50減去其它部門的人數(shù);(2)根據(jù)中位數(shù)和眾數(shù)的定義求解即可;(3)由平均數(shù)、眾數(shù)、中位數(shù)的特征可知,平均數(shù)易受極端數(shù)據(jù)的影響,用眾數(shù)和中位數(shù)映該公司員工的月工資實際水平更合適些;(4)去掉極端數(shù)據(jù)后平均數(shù)可以反映該公司員工的月工資實際水平.【詳解】(1)該公司“高級技工”的人數(shù)=50﹣1﹣3﹣2﹣3﹣24﹣1=16(人);(2)工資數(shù)從小到大排列,第25和第26分別是:1600元和1800元,因而中位數(shù)是1700元;在這些數(shù)中1600元出現(xiàn)的次數(shù)最多,因而眾數(shù)是1600元;(3)這個經(jīng)理的介紹不能反映該公司員工的月工資實際水平.用1700元或1600元來介紹更合理些.(4)(元).能反映該公司員工的月工資實際水平.23、(1)=;(2)結(jié)論:AC2=AG?AH.理由見解析;(3)①△AGH的面積不變.②m的值為或2或8﹣4..【解析】
(1)證明
評論
0/150
提交評論