2023-2024學年湖北省黃岡市蘄春縣高一數學第二學期期末質量跟蹤監(jiān)視模擬試題含解析_第1頁
2023-2024學年湖北省黃岡市蘄春縣高一數學第二學期期末質量跟蹤監(jiān)視模擬試題含解析_第2頁
2023-2024學年湖北省黃岡市蘄春縣高一數學第二學期期末質量跟蹤監(jiān)視模擬試題含解析_第3頁
2023-2024學年湖北省黃岡市蘄春縣高一數學第二學期期末質量跟蹤監(jiān)視模擬試題含解析_第4頁
2023-2024學年湖北省黃岡市蘄春縣高一數學第二學期期末質量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年湖北省黃岡市蘄春縣高一數學第二學期期末質量跟蹤監(jiān)視模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.閱讀如圖的程序框圖,運行該程序,則輸出的值為()A.3 B.1C.-1 D.02.已知,,則()A. B. C. D.3.已知角A滿足,則的值為()A. B. C. D.4.已知向量,,,的夾角為45°,若,則()A. B. C.2 D.35.已知二次函數,當時,其拋物線在軸上截得線段長依次為,則的值是A.1 B.2 C.3 D.46.在中,角,,所對的邊為,,,且為銳角,若,,,則()A. B. C. D.7.兩圓和的位置關系是()A.相離 B.相交 C.內切 D.外切8.已知數列的前n項和為,且滿足,則()A.1 B. C. D.20169.已知函數,給出下列四個結論:①函數滿足;②函數圖象關于直線對稱;③函數滿足;④函數在是單調增函數;其中正確結論的個數是()A. B. C. D.10.若點,關于直線l對稱,則l的方程為()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知直線與圓交于兩點,過分別作的垂線與軸交于兩點,則_______.12.如圖,一棟建筑物AB高(30-10)m,在該建筑物的正東方向有一個通信塔CD.在它們之間的地面M點(B、M、D三點共線)測得對樓頂A、塔頂C的仰角分別是15°和60°,在樓頂A處測得對塔頂C的仰角為30°,則通信塔CD的高為______m.13.已知向量、滿足,,且,則與的夾角為________.14.底面邊長為,高為的直三棱柱形容器內放置一氣球,使氣球充氣且盡可能的膨脹(保持球的形狀),則氣球表面積的最大值為_______.15.在空間直角坐標系中,三棱錐的各頂點都在一個半徑為的球面上,為球心,,,,,則球的體積與三棱錐的體積之比是_____.16.在上,滿足的的取值范圍是______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.在ΔABC中,角A,B,C的對邊分別為a,b,c,且滿足3(b(1)求角B的大??;(2)若ΔABC的面積為32,B是鈍角,求b18.如圖半圓的直徑為4,為直徑延長線上一點,且,為半圓周上任一點,以為邊作等邊(、、按順時針方向排列)(1)若等邊邊長為,,試寫出關于的函數關系;(2)問為多少時,四邊形的面積最大?這個最大面積為多少?19.已知,,求證:(1);(2).20.已知點,,點為曲線上任意一點且滿足(1)求曲線的方程;(2)設曲線與軸交于兩點,點是曲線上異于的任意一點,直線分別交直線:于點,試問軸上是否存在一個定點,使得?若存在,求出點的坐標;若不存在,請說明理由.21.已知向量,.(1)求的坐標;(2)求.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】

從起始條件、開始執(zhí)行程序框圖,直到終止循環(huán).【詳解】,,,,,輸出.【點睛】本題是直到型循環(huán),只要滿足判斷框中的條件,就終止循環(huán),考查讀懂簡單的程序框圖.2、C【解析】

由放縮法可得出,再利用特殊值法以及不等式的基本性質可判斷各選項中不等式的正誤.【詳解】,,可得.取,,,則A、D選項中的不等式不成立;取,,,則B選項中的不等式不成立;且,由不等式的基本性質得,C選項中的不等式成立.故選:C.【點睛】本題考查不等式正誤的判斷,一般利用不等式的性質或特殊值法進行判斷,考查推理能力,屬于中等題.3、A【解析】

將等式兩邊平方,利用二倍角公式可得出的值.【詳解】,在該等式兩邊平方得,即,解得,故選A.【點睛】本題考查同角三角函數的基本關系,考查二倍角正弦公式的應用,一般地,解三角函數有關問題時,遇到,常用平方法來求解,考查計算能力,屬于中等題.4、C【解析】

利用向量乘法公式得到答案.【詳解】向量,,,的夾角為45°故答案選C【點睛】本題考查了向量的運算,意在考查學生的計算能力.5、A【解析】

當時,,運用韋達定理得,運用裂項相消求和可得由此能求出【詳解】當時,,由,可得,,由,.故選:A.【點睛】本題主要考查了函數的極限的運算,裂項相消求和,根與系數的關系,屬于中檔題.6、D【解析】

利用正弦定理化簡,再利用三角形面積公式,即可得到,由,求得,最后利用余弦定理即可得到答案.【詳解】由于,有正弦定理可得:,即由于在中,,,所以,聯(lián)立,解得:,由于為銳角,且,所以所以在中,由余弦定理可得:,故(負數舍去)故答案選D【點睛】本題考查正弦定理,余弦定理,以及面積公式在三角形求邊長中的應用,屬于中檔題.7、B【解析】

由圓的方程可得兩圓圓心坐標和半徑;根據圓心距和半徑之間的關系,即可判斷出兩圓的位置關系.【詳解】由圓的方程可知,兩圓圓心分別為:和;半徑分別為:,則圓心距:兩圓位置關系為:相交本題正確選項:【點睛】本題考查圓與圓位置關系的判定;關鍵是明確兩圓位置關系的判定是根據圓心距與兩圓半徑之間的長度關系確定.8、C【解析】

利用和關系得到數列通項公式,代入數據得到答案.【詳解】已知數列的前n項和為,且滿足,相減:取答案選C【點睛】本題考查了和關系,數列的通項公式,意在考查學生的計算能力.9、C【解析】

求出余弦函數的周期,對稱軸,單調性,逐個判斷選項的正誤即可.【詳解】函數,函數的周期為,所以①正確;時,,函數取得最大值,所以函數圖象關于直線對稱,②正確;函數滿足即.所以③正確;因為時,,函數取得最大值,所以函數在上不是單調增函數,不正確;故選.【點睛】本題主要考查余弦函數的單調性、周期性以及對稱軸等性質的應用.10、A【解析】

根據A,B關于直線l對稱,直線l經過AB中點且直線l和AB垂直,可得l的方程.【詳解】由題意可知AB中點坐標是,,因為A,B關于直線l對稱,所以直線l經過AB中點且直線l和AB垂直,所以直線l的斜率為,所以直線l的方程為,即,故選:A.【點睛】本題考查直線位置關系的應用,垂直關系利用斜率之積為求解,屬于簡單題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

聯(lián)立直線的方程和圓的方程,求得兩點的坐標,根據點斜式求得直線的方程,進而求得兩點的坐標,由此求得的長.【詳解】由解得,直線的斜率為,所以直線的斜率為,所以,令,得,所以.故答案為4【點睛】本小題主要考查直線和圓的位置關系,考查相互垂直的兩條直線斜率的關系,考查直線的點斜式方程,屬于中檔題.12、60【解析】

由已知可以求出、、的大小,在中,利用銳角三角函數,可以求出.在中,運用正弦定理,可以求出.在中,利用銳角三角函數,求出.【詳解】由題意可知:,,由三角形內角和定理可知.在中,.在中,由正弦定理可知:,在中,.【點睛】本題考查了銳角三角函數、正弦定理,考查了數學運算能力.13、【解析】

直接應用數量積的運算,求出與的夾角.【詳解】設向量、的夾角為;∵,∴,∵,∴.故答案為:.【點睛】本題考查向量的夾角計算,考查函數與方程思想、轉化與化歸思想,考查邏輯推理能力和運算求解能力,屬于基礎題.14、【解析】由題意,氣球充氣且盡可能地膨脹時,氣球的半徑為底面三角形內切圓的半徑

∵底面三角形的邊長分別為,∴底面三角形的邊長為直角三角形,利用等面積可求得∴氣球表面積為4π.15、【解析】

首先根據坐標求出三棱錐的體積,再計算出球的體積即可.【詳解】有題知建立空間直角坐標系,如圖所示由圖知:平面,...故答案為:【點睛】本題主要考查三棱錐的外接球,根據題意建立空間直角坐標系為解題的關鍵,屬于中檔題.16、【解析】

由,結合三角函數線,即可求解,得到答案.【詳解】如圖所示,因為,所以滿足的的取值范圍為.【點睛】本題主要考查了特殊角的三角函數值,以及三角函數線的應用,著重考查了推理與運算能力,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)B=π3或2π【解析】

(1)由正弦定理和三角恒等變換的公式,化簡得3sin(A+B)=2sinBsin(2)由(1)和三角形的面積公式,可求得ac=2,再由余弦定理和基本不等式,即可求解b的最小值.【詳解】(1)由題意,知3(b結合正弦定理得:3(即3sin又在△ABC中,sin(A+B)=sinC>0因為B∈(0,π)所以B=π3或(2)由三角形的面積公式,可得12又由sinB=32因為B是鈍角,所以B=2π由余弦定理得b2當且僅當a=c時取等號,所以b的最小值為6.【點睛】本題主要考查了正弦定理、余弦定理和三角形的面積公式的應用,其中在解有關三角形的題目時,要抓住題設條件和利用某個定理的信息,合理應用正弦定理和余弦定理求解是解答的關鍵,著重考查了運算與求解能力,屬于中檔試題.18、(1);(2)θ=時,四邊形OACB的面積最大,其最大面積為.【解析】

(1)根據余弦定理可求得(2)先表示出△ABC的面積及△OAB的面積,進而表示出四邊形OACB的面積,并化簡函數的解析式為正弦型函數的形式,再結合正弦型函數最值的求法進行求解.【詳解】(1)由余弦定理得則(2)四邊形OACB的面積=△OAB的面積+△ABC的面積則△ABC的面積△OAB的面積?OA?OB?sinθ?2?4?sinθ=4sinθ四邊形OACB的面積4sinθ=sin(θ﹣)∴當θ﹣=,即θ=時,四邊形OACB的面積最大,其最大面積為.【點睛】本題考查利用正余弦定理求解面積最值,其中準確列出面積表達式是關鍵,考查化簡求值能力,是中檔題19、(1)證明見詳解;(2)證明見詳解.【解析】

(1)利用不等式性質,得,再證,最后證明;(2)先證,再證明.【詳解】證明:(1)因為,所以,于是,即,由,得.(2)因為,所,又因為,所以,所以.【點睛】本題考查利用不等式性質證明不等式,需要熟練掌握不等式的性質,屬綜合基礎題.20、(1);(2)存在點使得成立.【解析】

(1)設P(x,y),由|PA|=2|PB|,得=2,由此能求出曲線的方程.(2)由題意得M(0,1),N(0,-1),設點R(x0,y0),(x0≠0),由點R在曲線上,得=1,直線RM的方程,從而直線RM與直線y=3的交點為,直線RN的方程為,從而直線RN與直線y=3的交點為,假設存在點S(0,m),使得成立,則,由此能求出存在點S,使得成立,且S點的坐標為.【詳解】(1)設,由,得:,整理得.所以曲線的方程為.(2)由題意得,,.設點,由點在曲線上,所以.直線的方程為,所以直線與直線的交點為.直線的方程為所以直線與直線的交點為.假設存在點,使得成立,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論