![湖州市吳興區(qū)中考數(shù)學(xué)對點突破模擬試卷及答案解析_第1頁](http://file4.renrendoc.com/view4/M00/09/15/wKhkGGZo4tKADhcYAAGxBRriNE8475.jpg)
![湖州市吳興區(qū)中考數(shù)學(xué)對點突破模擬試卷及答案解析_第2頁](http://file4.renrendoc.com/view4/M00/09/15/wKhkGGZo4tKADhcYAAGxBRriNE84752.jpg)
![湖州市吳興區(qū)中考數(shù)學(xué)對點突破模擬試卷及答案解析_第3頁](http://file4.renrendoc.com/view4/M00/09/15/wKhkGGZo4tKADhcYAAGxBRriNE84753.jpg)
![湖州市吳興區(qū)中考數(shù)學(xué)對點突破模擬試卷及答案解析_第4頁](http://file4.renrendoc.com/view4/M00/09/15/wKhkGGZo4tKADhcYAAGxBRriNE84754.jpg)
![湖州市吳興區(qū)中考數(shù)學(xué)對點突破模擬試卷及答案解析_第5頁](http://file4.renrendoc.com/view4/M00/09/15/wKhkGGZo4tKADhcYAAGxBRriNE84755.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
湖州市吳興區(qū)中考數(shù)學(xué)對點突破模擬試卷注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.對于二次函數(shù),下列說法正確的是()A.當(dāng)x>0,y隨x的增大而增大B.當(dāng)x=2時,y有最大值-3C.圖像的頂點坐標(biāo)為(-2,-7)D.圖像與x軸有兩個交點2.如圖,正六邊形ABCDEF中,P、Q兩點分別為△ACF、△CEF的內(nèi)心.若AF=2,則PQ的長度為何?()A.1 B.2 C.2﹣2 D.4﹣23.在半徑等于5cm的圓內(nèi)有長為cm的弦,則此弦所對的圓周角為A.60° B.120° C.60°或120° D.30°或120°4.已知函數(shù)y=(k-1)x2-4x+4的圖象與x軸只有一個交點,則k的取值范圍是()A.k≤2且k≠1 B.k<2且k≠1C.k=2 D.k=2或15.在平面直角坐標(biāo)系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3…按如圖所示的方式放置,其中點B1在y軸上,點C1、E1、E2、C2、E3、E4、C3…在x軸上,已知正方形A1B1C1D1的邊長為l,∠B1C1O=60°,B1C1∥B2C2∥B3C3…,則正方形A2017B2017C2017D2017的邊長是()A.(12)2016B.(12)2017C.(33)2016D.(6.施工隊要鋪設(shè)1000米的管道,因在中考期間需停工2天,每天要比原計劃多施工30米才能按時完成任務(wù).設(shè)原計劃每天施工x米,所列方程正確的是()A.=2 B.=2C.=2 D.=27.如圖,兩個一次函數(shù)圖象的交點坐標(biāo)為,則關(guān)于x,y的方程組的解為()A. B. C. D.8.下列哪一個是假命題()A.五邊形外角和為360°B.切線垂直于經(jīng)過切點的半徑C.(3,﹣2)關(guān)于y軸的對稱點為(﹣3,2)D.拋物線y=x2﹣4x+2017對稱軸為直線x=29.計算(﹣3)﹣(﹣6)的結(jié)果等于()A.3B.﹣3C.9D.1810.下列運算正確的是()A.a(chǎn)12÷a4=a3 B.a(chǎn)4?a2=a8 C.(﹣a2)3=a6 D.a(chǎn)?(a3)2=a7二、填空題(共7小題,每小題3分,滿分21分)11.分解因式6xy2-9x2y-y3=_____________.12.用科學(xué)計數(shù)器計算:2×sin15°×cos15°=_______(結(jié)果精確到0.01).13.一組數(shù)據(jù)7,9,8,7,9,9,8的中位數(shù)是__________14.對于實數(shù)a,b,我們定義符號max{a,b}的意義為:當(dāng)a≥b時,max{a,b}=a;當(dāng)a<b時,max{a,b]=b;如:max{4,﹣2}=4,max{3,3}=3,若關(guān)于x的函數(shù)為y=max{x+3,﹣x+1},則該函數(shù)的最小值是_____.15.已知y與x的函數(shù)滿足下列條件:①它的圖象經(jīng)過(1,1)點;②當(dāng)時,y隨x的增大而減?。畬懗鲆粋€符合條件的函數(shù):__________.16.在△ABC中,∠BAC=45°,∠ACB=75°,分別以A、C為圓心,以大于AC的長為半徑畫弧,兩弧交于F、G作直線FG,分別交AB,AC于點D、E,若AC的長為4,則BC的長為_____.17.如圖,在矩形ABCD中,AD=5,AB=8,點E為射線DC上一個動點,把△ADE沿直線AE折疊,當(dāng)點D的對應(yīng)點F剛好落在線段AB的垂直平分線上時,則DE的長為_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,點O為Rt△ABC斜邊AB上的一點,以O(shè)A為半徑的⊙O與BC切于點D,與AC交于點E,連接AD.求證:AD平分∠BAC;若∠BAC=60°,OA=4,求陰影部分的面積(結(jié)果保留π).19.(5分)已知,拋物線(為常數(shù)).(1)拋物線的頂點坐標(biāo)為(,)(用含的代數(shù)式表示);(2)若拋物線經(jīng)過點且與圖象交點的縱坐標(biāo)為3,請在圖1中畫出拋物線的簡圖,并求的函數(shù)表達(dá)式;(3)如圖2,規(guī)矩的四條邊分別平行于坐標(biāo)軸,,若拋物線經(jīng)過兩點,且矩形在其對稱軸的左側(cè),則對角線的最小值是.20.(8分)如圖所示,已知,試判斷與的大小關(guān)系,并說明理由.21.(10分)邊長為6的等邊△ABC中,點D,E分別在AC,BC邊上,DE∥AB,EC=2如圖1,將△DEC沿射線EC方向平移,得到△D′E′C′,邊D′E′與AC的交點為M,邊C′D′與∠ACC′的角平分線交于點N.當(dāng)CC′多大時,四邊形MCND′為菱形?并說明理由.如圖2,將△DEC繞點C旋轉(zhuǎn)∠α(0°<α<360°),得到△D′E′C,連接AD′,BE′.邊D′E′的中點為P.①在旋轉(zhuǎn)過程中,AD′和BE′有怎樣的數(shù)量關(guān)系?并說明理由;②連接AP,當(dāng)AP最大時,求AD′的值.(結(jié)果保留根號)22.(10分)已知:如圖,在菱形中,點,,分別為,,的中點,連接,,,.求證:;當(dāng)與滿足什么關(guān)系時,四邊形是正方形?請說明理由.23.(12分)如圖,在平面直角坐標(biāo)系中,拋物線C1經(jīng)過點A(﹣4,0)、B(﹣1,0),其頂點為.(1)求拋物線C1的表達(dá)式;(2)將拋物線C1繞點B旋轉(zhuǎn)180°,得到拋物線C2,求拋物線C2的表達(dá)式;(3)再將拋物線C2沿x軸向右平移得到拋物線C3,設(shè)拋物線C3與x軸分別交于點E、F(E在F左側(cè)),頂點為G,連接AG、DF、AD、GF,若四邊形ADFG為矩形,求點E的坐標(biāo).24.(14分)在一個不透明的口袋里裝有四個球,這四個球上分別標(biāo)記數(shù)字﹣3、﹣1、0、2,除數(shù)字不同外,這四個球沒有任何區(qū)別.從中任取一球,求該球上標(biāo)記的數(shù)字為正數(shù)的概率;從中任取兩球,將兩球上標(biāo)記的數(shù)字分別記為x、y,求點(x,y)位于第二象限的概率.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】
二次函數(shù),所以二次函數(shù)的開口向下,當(dāng)x<2,y隨x的增大而增大,選項A錯誤;當(dāng)x=2時,取得最大值,最大值為-3,選項B正確;頂點坐標(biāo)為(2,-3),選項C錯誤;頂點坐標(biāo)為(2,-3),拋物線開口向下可得拋物線與x軸沒有交點,選項D錯誤,故答案選B.考點:二次函數(shù)的性質(zhì).2、C【解析】
先判斷出PQ⊥CF,再求出AC=2,AF=2,CF=2AF=4,利用△ACF的面積的兩種算法即可求出PG,然后計算出PQ即可.【詳解】解:如圖,連接PF,QF,PC,QC∵P、Q兩點分別為△ACF、△CEF的內(nèi)心,∴PF是∠AFC的角平分線,F(xiàn)Q是∠CFE的角平分線,∴∠PFC=∠AFC=30°,∠QFC=∠CFE=30°,∴∠PFC=∠QFC=30°,同理,∠PCF=∠QCF∴PQ⊥CF,∴△PQF是等邊三角形,∴PQ=2PG;易得△ACF≌△ECF,且內(nèi)角是30o,60o,90o的三角形,∴AC=2,AF=2,CF=2AF=4,∴S△ACF=AF×AC=×2×2=2,過點P作PM⊥AF,PN⊥AC,PQ交CF于G,∵點P是△ACF的內(nèi)心,∴PM=PN=PG,∴S△ACF=S△PAF+S△PAC+S△PCF=AF×PM+AC×PN+CF×PG=×2×PG+×2×PG+×4×PG=(1++2)PG=(3+)PG=2,∴PG==,∴PQ=2PG=2()=2-2.故選C.【點睛】本題是三角形的內(nèi)切圓與內(nèi)心,主要考查了三角形的內(nèi)心的特點,三角形的全等,解本題的關(guān)鍵是知道三角形的內(nèi)心的意義.3、C【解析】
根據(jù)題意畫出相應(yīng)的圖形,由OD⊥AB,利用垂徑定理得到D為AB的中點,由AB的長求出AD與BD的長,且得出OD為角平分線,在Rt△AOD中,利用銳角三角函數(shù)定義及特殊角的三角函數(shù)值求出∠AOD的度數(shù),進(jìn)而確定出∠AOB的度數(shù),利用同弧所對的圓心角等于所對圓周角的2倍,即可求出弦AB所對圓周角的度數(shù).【詳解】如圖所示,∵OD⊥AB,∴D為AB的中點,即AD=BD=,在Rt△AOD中,OA=5,AD=,∴sin∠AOD=,又∵∠AOD為銳角,∴∠AOD=60°,∴∠AOB=120°,∴∠ACB=∠AOB=60°,又∵圓內(nèi)接四邊形AEBC對角互補,∴∠AEB=120°,則此弦所對的圓周角為60°或120°.故選C.【點睛】此題考查了垂徑定理,圓周角定理,特殊角的三角函數(shù)值,以及銳角三角函數(shù)定義,熟練掌握垂徑定理是解本題的關(guān)鍵.4、D【解析】
當(dāng)k+1=0時,函數(shù)為一次函數(shù)必與x軸有一個交點;當(dāng)k+1≠0時,函數(shù)為二次函數(shù),根據(jù)條件可知其判別式為0,可求得k的值.【詳解】當(dāng)k-1=0,即k=1時,函數(shù)為y=-4x+4,與x軸只有一個交點;當(dāng)k-1≠0,即k≠1時,由函數(shù)與x軸只有一個交點可知,∴△=(-4)2-4(k-1)×4=0,解得k=2,綜上可知k的值為1或2,故選D.【點睛】本題主要考查函數(shù)與x軸的交點,掌握二次函數(shù)與x軸只有一個交點的條件是解題的關(guān)鍵,解決本題時注意考慮一次函數(shù)和二次函數(shù)兩種情況.5、C【解析】利用正方形的性質(zhì)結(jié)合銳角三角函數(shù)關(guān)系得出正方形的邊長,進(jìn)而得出變化規(guī)律即可得出答案.解:如圖所示:∵正方形A1B1C1D1的邊長為1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…∴D1E1=B2E2,D2E3=B3E4,∠D1C1E1=∠C2B2E2=∠C3B3E4=30°,∴D1E1=C1D1sin30°=,則B2C2===()1,同理可得:B3C3==()2,故正方形AnBnCnDn的邊長是:()n﹣1.則正方形A2017B2017C2017D2017的邊長是:()2.故選C.“點睛”此題主要考查了正方形的性質(zhì)以及銳角三角函數(shù)關(guān)系,得出正方形的邊長變化規(guī)律是解題關(guān)鍵.6、A【解析】分析:設(shè)原計劃每天施工x米,則實際每天施工(x+30)米,根據(jù):原計劃所用時間﹣實際所用時間=2,列出方程即可.詳解:設(shè)原計劃每天施工x米,則實際每天施工(x+30)米,根據(jù)題意,可列方程:=2,故選A.點睛:本題考查了由實際問題抽象出分式方程,關(guān)鍵是讀懂題意,找出合適的等量關(guān)系,列出方程.7、A【解析】
根據(jù)任何一個一次函數(shù)都可以化為一個二元一次方程,再根據(jù)兩個函數(shù)交點坐標(biāo)就是二元一次方程組的解可直接得到答案.【詳解】解:∵直線y1=k1x+b1與y2=k2x+b2的交點坐標(biāo)為(2,4),∴二元一次方程組的解為故選A.【點睛】本題主要考查了函數(shù)解析式與圖象的關(guān)系,滿足解析式的點就在函數(shù)的圖象上,在函數(shù)的圖象上的點,就一定滿足函數(shù)解析式.函數(shù)圖象交點坐標(biāo)為兩函數(shù)解析式組成的方程組的解.8、C【解析】分析:根據(jù)每個選項所涉及的數(shù)學(xué)知識進(jìn)行分析判斷即可.詳解:A選項中,“五邊形的外角和為360°”是真命題,故不能選A;B選項中,“切線垂直于經(jīng)過切點的半徑”是真命題,故不能選B;C選項中,因為點(3,-2)關(guān)于y軸的對稱點的坐標(biāo)是(-3,-2),所以該選項中的命題是假命題,所以可以選C;D選項中,“拋物線y=x2﹣4x+2017對稱軸為直線x=2”是真命題,所以不能選D.故選C.點睛:熟記:(1)凸多邊形的外角和都是360°;(2)切線的性質(zhì);(3)點P(a,b)關(guān)于y軸的對稱點為(-a,b);(4)拋物線的對稱軸是直線:等數(shù)學(xué)知識,是正確解答本題的關(guān)鍵.9、A【解析】原式=?3+6=3,故選A10、D【解析】
分別根據(jù)同底數(shù)冪的除法、乘法和冪的乘方的運算法則逐一計算即可得.【詳解】解:A、a12÷a4=a8,此選項錯誤;
B、a4?a2=a6,此選項錯誤;
C、(-a2)3=-a6,此選項錯誤;
D、a?(a3)2=a?a6=a7,此選項正確;
故選D.【點睛】本題主要考查冪的運算,解題的關(guān)鍵是掌握同底數(shù)冪的除法、乘法和冪的乘方的運算法則.二、填空題(共7小題,每小題3分,滿分21分)11、-y(3x-y)2【解析】
先提公因式-y,然后再利用完全平方公式進(jìn)行分解即可得.【詳解】6xy2-9x2y-y3=-y(9x2-6xy+y2)=-y(3x-y)2,故答案為:-y(3x-y)2.【點睛】本題考查了利用提公因式法與公式法分解因式,熟練掌握因式分解的方法及步驟是解題的關(guān)鍵.因式分解的一般步驟:一提(公因式),二套(套用公式),注意一定要分解到不能再分解為止.12、0.50【解析】
直接使用科學(xué)計算器計算即可,結(jié)果需保留二位有效數(shù)字.【詳解】用科學(xué)計算器計算得0.5,故填0.50,【點睛】此題主要考查科學(xué)計算器的使用,注意結(jié)果保留二位有效數(shù)字.13、1【解析】
將一組數(shù)據(jù)按照從小到大(或從大到小)的順序排列,如果數(shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù).如果這組數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù),據(jù)此可得.【詳解】解:將數(shù)據(jù)重新排列為7、7、1、1、9、9、9,所以這組數(shù)據(jù)的中位數(shù)為1,故答案為1.【點睛】本題主要考查中位數(shù),解題的關(guān)鍵是掌握中位數(shù)的定義.14、2【解析】試題分析:當(dāng)x+3≥﹣x+1,即:x≥﹣1時,y=x+3,∴當(dāng)x=﹣1時,ymin=2,當(dāng)x+3<﹣x+1,即:x<﹣1時,y=﹣x+1,∵x<﹣1,∴﹣x>1,∴﹣x+1>2,∴y>2,∴ymin=2,15、y=-x+2(答案不唯一)【解析】①圖象經(jīng)過(1,1)點;②當(dāng)x>1時.y隨x的增大而減小,這個函數(shù)解析式為y=-x+2,故答案為y=-x+2(答案不唯一).16、【解析】
連接CD在根據(jù)垂直平分線的性質(zhì)可得到△ADC為等腰直角三角形,結(jié)合已知的即可得到∠BCD的大小,然后就可以解答出此題【詳解】解:連接CD,∵DE垂直平分AC,∴AD=CD,∴∠DCA=∠BAC=45°,∴△ADC是等腰直角三角形,∴,∠ADC=90°,∴∠BDC=90°,∵∠ACB=75°,∴∠BCD=30°,∴BC=,故答案為.【點睛】此題主要考查垂直平分線的性質(zhì),解題關(guān)鍵在于連接CD利用垂直平分線的性質(zhì)證明△ADC為等腰直角三角形17、或10【解析】
試題分析:根據(jù)題意,可分為E點在DC上和E在DC的延長線上,兩種情況求解即可:如圖①,當(dāng)點E在DC上時,點D的對應(yīng)點F剛好落在線段AB的垂直平分線QP上,易求FP=3,所以FQ=2,設(shè)FE=x,則FE=x,QE=4-x,在Rt△EQF中,(4-x)2+22=x2,所以x=.(2)如圖②,當(dāng),所以FQ=點E在DG的延長線上時,點D的對應(yīng)點F剛好落在線段AB的垂直平分線QP上,易求FP=3,所以FQ=8,設(shè)DE=x,則FE=x,QE=x-4,在Rt△EQF中,(x-4)2+82=x2,所以x=10,綜上所述,DE=或10.三、解答題(共7小題,滿分69分)18、(1)見解析;(2)【解析】試題分析:(1)連接OD,則由已知易證OD∥AC,從而可得∠CAD=∠ODA,結(jié)合∠ODA=∠OAD,即可得到∠CAD=∠OAD,從而得到AD平分∠BAC;(2)連接OE、DE,由已知易證△AOE是等邊三角形,由此可得∠ADE=∠AOE=30°,由AD平分∠BAC可得∠OAD=30°,從而可得∠ADE=∠OAD,由此可得DE∥AO,從而可得S陰影=S扇形ODE,這樣只需根據(jù)已知條件求出扇形ODE的面積即可.試題解析:(1)連接OD.∵BC是⊙O的切線,D為切點,∴OD⊥BC.又∵AC⊥BC,∴OD∥AC,∴∠ADO=∠CAD.又∵OD=OA,∴∠ADO=∠OAD,∴∠CAD=∠OAD,即AD平分∠BAC.(2)連接OE,ED.∵∠BAC=60°,OE=OA,∴△OAE為等邊三角形,∴∠AOE=60°,∴∠ADE=30°.又∵,∴∠ADE=∠OAD,∴ED∥AO,∴S△AED=S△OED,∴陰影部分的面積=S扇形ODE=.19、(1);(2)圖象見解析,或;(3)【解析】
(1)將拋物線的解析式配成頂點式,即可得出頂點坐標(biāo);(2)根據(jù)拋物線經(jīng)過點M,用待定系數(shù)法求出拋物線的解析式,即可得出圖象,然后將縱坐標(biāo)3代入拋物線的解析式中,求出橫坐標(biāo),然后將點再代入反比例函數(shù)的表達(dá)式中即可求出反比例函數(shù)的表示式;(3)設(shè)出A的坐標(biāo),表示出C,D的坐標(biāo),得到CD的長度,根據(jù)題意找到CD的最小值,因為AD的長度不變,所以當(dāng)CD最小時,對角線AC最小,則答案可求.【詳解】解:(1),拋物線的頂點的坐標(biāo)為.故答案為:(2)將代入拋物線的解析式得:解得:,拋物線的解析式為.拋物線的大致圖象如圖所示:將代入得:,解得:或拋物線與反比例函數(shù)圖象的交點坐標(biāo)為或.將代入得:,.將代入得:,.綜上所述,反比例函數(shù)的表達(dá)式為或.(3)設(shè)點的坐標(biāo)為,則點的坐標(biāo)為,的坐標(biāo)為.的長隨的增大而減?。匦卧谄鋵ΨQ軸的左側(cè),拋物線的對稱軸為,當(dāng)時,的長有最小值,的最小值.的長度不變,當(dāng)最小時,有最小值.的最小值故答案為:.【點睛】本題主要考查二次函數(shù),反比例函數(shù)與幾何綜合,掌握二次函數(shù),反比例函數(shù)的圖象與性質(zhì)是解題的關(guān)鍵.20、.【解析】
首先判斷∠AED與∠ACB是一對同位角,然后根據(jù)已知條件推出DE∥BC,得出兩角相等.【詳解】解:∠AED=∠ACB.理由:如圖,分別標(biāo)記∠1,∠2,∠3,∠1.∵∠1+∠1=180°(平角定義),∠1+∠2=180°(已知).
∴∠2=∠1.
∴EF∥AB(內(nèi)錯角相等,兩直線平行).
∴∠3=∠ADE(兩直線平行,內(nèi)錯角相等).
∵∠3=∠B(已知),
∴∠B=∠ADE(等量代換).
∴DE∥BC(同位角相等,兩直線平行).
∴∠AED=∠ACB(兩直線平行,同位角相等).【點睛】本題重點考查平行線的性質(zhì)和判定,難度適中.21、(1)當(dāng)CC'=時,四邊形MCND'是菱形,理由見解析;(2)①AD'=BE',理由見解析;②.【解析】
(1)先判斷出四邊形MCND'為平行四邊形,再由菱形的性質(zhì)得出CN=CM,即可求出CC';(2)①分兩種情況,利用旋轉(zhuǎn)的性質(zhì),即可判斷出△ACD≌△BCE'即可得出結(jié)論;②先判斷出點A,C,P三點共線,先求出CP,AP,最后用勾股定理即可得出結(jié)論.【詳解】(1)當(dāng)CC'=時,四邊形MCND'是菱形.理由:由平移的性質(zhì)得,CD∥C'D',DE∥D'E',∵△ABC是等邊三角形,∴∠B=∠ACB=60°,∴∠ACC'=180°-∠ACB=120°,∵CN是∠ACC'的角平分線,∴∠D'E'C'=∠ACC'=60°=∠B,∴∠D'E'C'=∠NCC',∴D'E'∥CN,∴四邊形MCND'是平行四邊形,∵∠ME'C'=∠MCE'=60°,∠NCC'=∠NC'C=60°,∴△MCE'和△NCC'是等邊三角形,∴MC=CE',NC=CC',∵E'C'=2,∵四邊形MCND'是菱形,∴CN=CM,∴CC'=E'C'=;(2)①AD'=BE',理由:當(dāng)α≠180°時,由旋轉(zhuǎn)的性質(zhì)得,∠ACD'=∠BCE',由(1)知,AC=BC,CD'=CE',∴△ACD'≌△BCE',∴AD'=BE',當(dāng)α=180°時,AD'=AC+CD',BE'=BC+CE',即:AD'=BE',綜上可知:AD'=BE'.②如圖連接CP,在△ACP中,由三角形三邊關(guān)系得,AP<AC+CP,∴當(dāng)點A,C,P三點共線時,AP最大,如圖1,在△D'CE'中,由P為D'E的中點,得AP⊥D'E',PD'=,∴CP=3,∴AP=6+3=9,在Rt△APD'中,由勾股定理得,AD'=.【點睛】此題是四邊形綜合題,主要考查了平行四邊形的判定和性質(zhì),菱形的性質(zhì),平移和旋轉(zhuǎn)的性質(zhì),等邊三角形的判定和性質(zhì),勾股定理,解(1)的關(guān)鍵是四邊形MCND'是平行四邊形,解(2)的關(guān)鍵是判斷出點A,C,P三點共線時,AP最大.22、見解析【解析】
(1)由菱形的性質(zhì)得出∠B=∠D,AB=BC=DC=AD,由已知和三角形中位線定理證出AE=BE=DF=AF,OF=DC,OE=BC,OE∥BC,由(SAS)證明△BCE≌△DCF即可;
(2)由(1)得:AE=OE=OF=AF,證出四邊形AEOF是菱形,再證出∠AEO=90°,四邊形AEOF是正方形.【詳解】(1)證明:∵四邊形ABCD是菱形,∴∠B=∠D,AB=BC=DC=AD,∵點E,O,F(xiàn)分別為AB,AC,AD的中點,∴AE=BE=DF=AF,OF=DC,OE=BC,OE∥BC,在△BCE和△DCF中,,∴△BCE≌△DCF(SAS);(2)當(dāng)AB⊥BC時,四邊形AEOF是正方形,理由如下:由(1)得:AE=OE=OF=AF,∴四邊形AEOF是菱形,∵AB⊥BC,OE∥BC,∴OE⊥AB,∴∠AEO=90°,∴四邊形AEOF是正方形.【點睛】本題考查了全等三角形、菱形、正方形的性質(zhì),解題的關(guān)鍵是熟練的掌握菱形、正方形、全等三角形的性質(zhì).23、(1)y;(2);(3)E(,0).【解析】
(1)根據(jù)拋物線C1的頂點坐標(biāo)可設(shè)頂點式將點B坐標(biāo)代入求解即可;(2)由拋物線C1繞點B旋轉(zhuǎn)180°得到拋物線C2知拋物線C2的頂點坐標(biāo),可設(shè)拋物
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 統(tǒng)編六上《青山不老》教學(xué)設(shè)計
- 教學(xué)設(shè)計方案作業(yè)
- XX公司天花吊頂施工合作合同
- 個人貸款合同范文及格式
- 個人保證擔(dān)保借款合同書正式版
- 臨街門面租賃合同標(biāo)準(zhǔn)版
- 中鐵物資商城物流配送合同新范本
- 個人住房抵押借款合同模板
- 產(chǎn)品生產(chǎn)裝配標(biāo)準(zhǔn)化合同
- 采購預(yù)付款合同范本
- 二零二五年度集團(tuán)公司內(nèi)部項目專項借款合同范本3篇
- 事業(yè)單位公開招聘工作人員考試題(公共基礎(chǔ)知識試題和答案)
- 廉潔應(yīng)征承諾書
- 2023年大學(xué)物理化學(xué)實驗報告化學(xué)電池溫度系數(shù)的測定
- 農(nóng)村公共基礎(chǔ)知識
- 腦出血的護(hù)理課件腦出血護(hù)理查房PPT
- 煤礦機電運輸安全培訓(xùn)課件
- 扣繳個人所得稅報告表-(Excel版)
- Unit+4+History+and+Traditions單元整體教學(xué)設(shè)計課件 高中英語人教版(2019)必修第二冊單元整體教學(xué)設(shè)計
- 2023年全國自學(xué)考試00054管理學(xué)原理試題答案
- 六年級譯林版小學(xué)英語閱讀理解訓(xùn)練經(jīng)典題目(附答案)
評論
0/150
提交評論